The optical spectra of novae are characterized by emission lines from the hydrogen Balmer series and either Fe ii or He/N, leading to their traditional classification into two spectral classes: ‘Fe ii’ and ‘He/N’. For decades, the origins of these spectral features were discussed in the literature in the contexts of different bodies of gas or changes in the opacity of the ejecta, particularly associated with studies by R. E. Williams and S. N. Shore. Here, we revisit these major studies with dedicated, modern data sets, covering the evolution of several novae from early rise to peak all the way to the nebular phase. Our data confirm previous suggestions in the literature that the ‘Fe ii’ and ‘He/N’ spectral classes are phases in the spectroscopic evolution of novae driven primarily by changes in the opacity, ionization, and density of the ejecta, and most if not all novae go through at least three spectroscopic phases as their eruptions evolve: an early He/N (phase 1; observed during the early rise to visible peak and characterized by P Cygni lines of He i and N ii/iii), then an Fe ii (phase 2; observed near visible peak and characterized by P Cygni lines of Fe ii and O i), and then a later He/N (phase 3; observed during the decline and characterized by emission lines of He i/ii, N ii/iii), before entering the nebular phase. This spectral evolution seems to be ubiquitous across novae, regardless of their speed class; however the duration of each of these phases differs based on the speed class of the nova.
- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources3
- Resource Type
-
00000030000
- More
- Availability
-
21
- Author / Contributor
- Filter by Author / Creator
-
-
Panurach, T (2)
-
Aydi, E (1)
-
Aydi, E. (1)
-
Brink, J. (1)
-
Buckley, D. A. H. (1)
-
Buckley, D_A H (1)
-
Chomiuk, L (1)
-
Chomiuk, L. (1)
-
Ederoclite, A (1)
-
Geller, A M (1)
-
Gosnell, N M (1)
-
Harvey, E. J. (1)
-
Holoien, T. W. -S (1)
-
Izzo, L (1)
-
Izzo, L. (1)
-
Kawash, A. (1)
-
Kniazev, A (1)
-
Knigge, C (1)
-
Kyer, R (1)
-
Leigh, N W (1)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
ABSTRACT Free, publicly-accessible full text available November 27, 2024 -
Aydi, E. ; Chomiuk, L. ; Mikołajewska, J. ; Brink, J. ; Metzger, B. D. ; Strader, J. ; Buckley, D. A. H. ; Harvey, E. J. ; Holoien, T. W. -S ; Izzo, L. ; et al ( , Monthly Notices of the Royal Astronomical Society)
ABSTRACT We present early spectral observations of the very slow Galactic nova Gaia22alz, over its gradual rise to peak brightness that lasted 180 d. During the first 50 d, when the nova was only 3–4 mag above its normal brightness, the spectra showed narrow (FWHM ≈ 400 km s−1) emission lines of H Balmer, He i, He ii, and C iv but no P Cygni absorption. A few weeks later, the high-excitation He ii and C iv lines disappeared, and P Cygni profiles of Balmer, He i, and eventually Fe ii lines emerged, yielding a spectrum typical of classical novae before peak. We propose that the early (first 50 d) spectra of Gaia22alz, particularly the emission lines with no P Cygni profiles, are produced in the white dwarf’s optically thin envelope or accretion disc, reprocessing ultraviolet and potentially X-ray emission from the white dwarf after a dramatic increase in the rate of thermonuclear reactions, during a phase known as the ‘early X-ray/UV flash’. If true, this would be one of the rare times that the optical signature of the early X-ray/UV flash has been detected. While this phase might last only a few hours in other novae and thus be easily missed, it was possible to detect in Gaia22alz due to its very slow and gradual rise and thanks to the efficiency of new all-sky surveys in detecting transients on their rise. We also consider alternative scenarios that could explain the early spectral features of Gaia22alz and its gradual rise.
-
Leigh, N W ; Panurach, T ; Simunovic, M ; Geller, A M ; Zurek, D ; Shara, M M ; Sills, A ; Knigge, C ; Gosnell, N M ; Mathieu, R ; et al ( , Monthly Notices of the Royal Astronomical Society)