The stability of a dark matter detector on the timescale of a few years is a key requirement due to the large exposure needed to achieve a competitive sensitivity. It is especially crucial to enable the detector to potentially detect any annual event rate modulation, an expected dark matter signature. In this work, we present the performance history of the DarkSide-50 dual-phase argon time projection chamber over its almost three-year low-radioactivity argon run. In particular, we focus on the electroluminescence signal that enables sensitivity to sub-keV energy depositions. The stability of the electroluminescence yield is found to be better than 0.5%. Finally, we show the temporal evolution of the observed event rate around the sub-keV region being consistent to the background prediction.
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Free, publicly-accessible full text available May 1, 2025 -
Abstract In this work we will document the design and the performances of a SiPM-based photo-detector with a surface area of 100 cm 2 conceived to operate as a replacement for PMTs. The signals from 94 SiPMs are summed up to produce an aggregated output that exhibits in liquid nitrogen a dark count rate (DCR) lower than 100 cps over the entire surface, a signal to noise ratio better than 13, and a timing resolution better than 5.5 ns. The module feeds about 360 mW at 5 V with a dynamic range in excess of 500 photo-electrons on a 100 Ω differential line. The unit can also operate at room temperature, at the cost of an increase of DCR to 10 8 cps.more » « less
-
Abstract The direct search for dark matter in the form of weakly interacting massive particles (WIMP) is performed by detecting nuclear recoils produced in a target material from the WIMP elastic scattering. The experimental identification of the direction of the WIMP-induced nuclear recoils is a crucial asset in this field, as it enables unmistakable modulation signatures for dark matter. The Recoil Directionality (ReD) experiment was designed to probe for such directional sensitivity in argon dual-phase time projection chambers (TPC), that are widely considered for current and future direct dark matter searches. The TPC of ReD was irradiated with neutrons at the INFN Laboratori Nazionali del Sud. Data were taken with nuclear recoils of known directions and kinetic energy of 72 keV, which is within the range of interest for WIMP-induced signals in argon. The direction-dependent liquid argon charge recombination model by Cataudella et al. was adopted and a likelihood statistical analysis was performed, which gave no indications of significant dependence of the detector response to the recoil direction. The aspect ratio
R of the initial ionization cloud is with 90 % confidence level.$$R < 1.072$$ -
Abstract We present a novel approach for the search of dark matter in the DarkSide-50 experiment, relying on Bayesian Networks. This method incorporates the detector response model into the likelihood function, explicitly maintaining the connection with the quantity of interest. No assumptions about the linearity of the problem or the shape of the probability distribution functions are required, and there is no need to morph signal and background spectra as a function of nuisance parameters. By expressing the problem in terms of Bayesian Networks, we have developed an inference algorithm based on a Markov Chain Monte Carlo to calculate the posterior probability. A clever description of the detector response model in terms of parametric matrices allows us to study the impact of systematic variations of any parameter on the final results. Our approach not only provides the desired information on the parameter of interest, but also potential constraints on the response model. Our results are consistent with recent published analyses and further refine the parameters of the detector response model.
-
We report a measurement of decay-time-dependent charge-parity () asymmetries indecays. We usepairs collected at theresonance with the Belle II detector at the SuperKEKB asymmetric-energy electron-positron collider. We reconstruct 220 signal events and extract the-violating parametersandfrom a fit to the distribution of the decay-time difference between the twomesons. The resulting confidence region is consistent with previous measurements inanddecays and with predictions based on the standard model.
Published by the American Physical Society 2024 Free, publicly-accessible full text available June 1, 2025 -
We search for the rare decayin asample of electron-positron collisions at theresonance collected with the Belle II detector at the SuperKEKB collider. We use the inclusive properties of the accompanyingmeson inevents to suppress background from other decays of the signalcandidate and light-quark pair production. We validate the measurement with an auxiliary analysis based on a conventional hadronic reconstruction of the accompanyingmeson. For background suppression, we exploit distinct signal features using machine learning methods tuned with simulated data. The signal-reconstruction efficiency and background suppression are validated through various control channels. The branching fraction is extracted in a maximum likelihood fit. Our inclusive and hadronic analyses yield consistent results for thebranching fraction ofand, respectively. Combining the results, we determine the branching fraction of the decayto be, providing the first evidence for this decay at 3.5 standard deviations. The combined result is 2.7 standard deviations above the standard model expectation.
Published by the American Physical Society 2024 Free, publicly-accessible full text available June 1, 2025 -
A bstract We report results from a study of
B ± → DK ± decays followed byD decaying to theCP -even final stateK +K − and CP-odd final state , where$$ {K}_S^0{\pi}^0 $$ D is an admixture ofD 0and states. These decays are sensitive to the Cabibbo-Kobayashi-Maskawa unitarity-triangle angle$$ {\overline{D}}^0 $$ ϕ 3. The results are based on a combined analysis of the final data set of 772× 106 pairs collected by the Belle experiment and a data set of 198$$ B\overline{B} $$ × 106 pairs collected by the Belle II experiment, both in electron-positron collisions at the Υ(4$$ B\overline{B} $$ S ) resonance. We measure the CP asymmetries to be$$ \mathcal{A} $$ CP += (+12.5± 5.8± 1.4)% and$$ \mathcal{A} $$ CP− = (− 16.7± 5.7± 0.6)%, and the ratios of branching fractions to be$$ \mathcal{R} $$ CP += 1.164± 0.081± 0.036 and$$ \mathcal{R} $$ CP− = 1.151± 0.074± 0.019. The first contribution to the uncertainties is statistical, and the second is systematic. The asymmetries$$ \mathcal{A} $$ CP +and$$ \mathcal{A} $$ CP− have similar magnitudes and opposite signs; their difference corresponds to 3.5 standard deviations. From these values we calculate 68.3% confidence intervals of (8.5° <ϕ 3< 16.5° ) or (84.5° <ϕ 3< 95.5° ) or (163.3° <ϕ 3< 171.5° ) and 0.321 <r B < 0.465.Free, publicly-accessible full text available May 1, 2025