skip to main content


Search for: All records

Creators/Authors contains: "Paracha, Muhammad Talha"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
    Abstract Despite the prevalence of Internet of Things (IoT) devices, there is little information about the purpose and risks of the Internet traffic these devices generate, and consumers have limited options for controlling those risks. A key open question is whether one can mitigate these risks by automatically blocking some of the Internet connections from IoT devices, without rendering the devices inoperable. In this paper, we address this question by developing a rigorous methodology that relies on automated IoT-device experimentation to reveal which network connections (and the information they expose) are essential, and which are not. We further develop strategies to automatically classify network traffic destinations as either required ( i.e. , their traffic is essential for devices to work properly) or not, hence allowing firewall rules to block traffic sent to non-required destinations without breaking the functionality of the device. We find that indeed 16 among the 31 devices we tested have at least one blockable non-required destination, with the maximum number of blockable destinations for a device being 11. We further analyze the destination of network traffic and find that all third parties observed in our experiments are blockable, while first and support parties are neither uniformly required or non-required. Finally, we demonstrate the limitations of existing blocklists on IoT traffic, propose a set of guidelines for automatically limiting non-essential IoT traffic, and we develop a prototype system that implements these guidelines. 
    more » « less
  2. Abstract Internet-connected voice-controlled speakers, also known as smart speakers , are increasingly popular due to their convenience for everyday tasks such as asking about the weather forecast or playing music. However, such convenience comes with privacy risks: smart speakers need to constantly listen in order to activate when the “wake word” is spoken, and are known to transmit audio from their environment and record it on cloud servers. In particular, this paper focuses on the privacy risk from smart speaker misactivations , i.e. , when they activate, transmit, and/or record audio from their environment when the wake word is not spoken. To enable repeatable, scalable experiments for exposing smart speakers to conversations that do not contain wake words, we turn to playing audio from popular TV shows from diverse genres. After playing two rounds of 134 hours of content from 12 TV shows near popular smart speakers in both the US and in the UK, we observed cases of 0.95 misactivations per hour, or 1.43 times for every 10,000 words spoken, with some devices having 10% of their misactivation durations lasting at least 10 seconds. We characterize the sources of such misactivations and their implications for consumers, and discuss potential mitigations. 
    more » « less