skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Parada, Gerardo"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Hagfeldt, Anders (Ed.)
    The inexpensive sulfur raw material is promising to enable cost-effective redox flow batteries for long duration energy storage. But the catastrophic through-membrane crossover of polysulfides remains a severe challenge resulting in irreversible performance degradation and short cycle life. In this work, we demonstrate that use of a permselective cation exchange membrane yields a two orders of magnitude enhancement in polysulfide retention compared to the benchmark Nafion membrane. Combined physico-chemical, spectroscopic, and microscopic analyses suggest more disordered sidechain structures, which lead to the more hydrophobic nature and smaller hydrophilic domains in the membrane. The microstructural features contribute to the effective mitigation of polysulfide crossover. As a result, the cycle life of polysulfide/ferricyanide flow cells is boosted over a substantially extended test time. This finding sheds light on the fundamental membrane factors that cause polysulfide permeation and can provide feasible directions in the development of permselective membranes for polysulfide flow batteries. 
    more » « less
    Free, publicly-accessible full text available September 9, 2026