- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources3
- Resource Type
-
0000000003000000
- More
- Availability
-
30
- Author / Contributor
- Filter by Author / Creator
-
-
Parcheta, Carolyn (2)
-
Cahalan, Ryan C. (1)
-
Cigala, Valeria (1)
-
Dietterich, Hannah R. (1)
-
Downs, Drew T. (1)
-
Dufek, Josef (1)
-
Fee, David (1)
-
Gansecki, Cheryl (1)
-
Gestrich, Julia E. (1)
-
Hon, Ken (1)
-
Hurwitz, Shaul (1)
-
Kueppers, Ulrich (1)
-
Lee, R. Lopaka (1)
-
Lundblad, Steven P. (1)
-
Lyons, John J. (1)
-
Mastin, Larry G. (1)
-
Matoza, Robin S. (1)
-
Parcheta, Carolyn E. (1)
-
Patrick, Matt (1)
-
Patrick, Matthew R. (1)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Real-time monitoring is crucial to assess hazards and mitigate risks of sustained volcanic eruptions that last hours to months or more. Sustained eruptions have been shown to produce a low frequency (infrasonic) form of jet noise. We analyze the lava fountaining at fissure 8 during the 2018 Lower East Rift Zone eruption of Kīlauea volcano, Hawaii, and connect changes in fountain properties with recorded infrasound signals from an array about 500 m from the fountain using jet noise scaling laws and visual imagery. Video footage from the eruption reveals a change in lava fountain dynamics from a tall, distinct fountain at the beginning of June to a low fountain with a turbulent, out-pouring lava pond surrounded by a tephra cone by mid-June. During mid-June, the sound pressure level reaches a maximum, and peak frequency drops. We develop a model that uses jet noise scaling relationships to estimate changes in volcanic jet diameter and jet velocity from infrasound sound pressure levels and peak frequencies. The results of this model indicate a decrease in velocity in mid-June which coincides with the decrease in fountain height. Furthermore, the model results suggest an increase in jet diameter, which can be explained by the larger width of the fountain that resembles a turbulent lava pond compared to the distinct fountain at the beginning of June. The agreement between the infrasound-derived and visually observed changes in fountain dynamics suggests that jet noise scaling relationships can be used to monitor lava fountain dynamics using infrasound recordings.more » « less
-
Cahalan, Ryan C.; Mastin, Larry G.; Van Eaton, Alexa R.; Hurwitz, Shaul; Smith, Adam B.; Dufek, Josef; Solovitz, Stephen A.; Patrick, Matt; Schmith, Johanne; Parcheta, Carolyn; et al (, Geochemistry, Geophysics, Geosystems)
-
Gansecki, Cheryl; Lee, R. Lopaka; Shea, Thomas; Lundblad, Steven P.; Hon, Ken; Parcheta, Carolyn (, Science)Changes in magma chemistry that affect eruptive behavior occur during many volcanic eruptions, but typical analytical techniques are too slow to contribute to hazard monitoring. We used rapid energy-dispersive x-ray fluorescence analysis to measure diagnostic elements in lava samples within a few hours of collection during the 2018 Kīlauea eruption. The geochemical data provided important information for field crews and civil authorities in advance of changing hazards during the eruption. The appearance of hotter magma was recognized several days before the onset of voluminous eruptions of fast-moving flows that destroyed hundreds of homes. We identified, in near real-time, interactions between older, colder, stored magma—including the unexpected eruption of andesite—and hotter magma delivered during dike emplacement.more » « less
An official website of the United States government
