skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Pardo, Jeremy"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Drost, Hajk-Georg (Ed.)
    Since they emerged approximately 125 million years ago, flowering plants have evolved to dominate the terrestrial landscape and survive in the most inhospitable environments on earth. At their core, these adaptations have been shaped by changes in numerous, interconnected pathways and genes that collectively give rise to emergent biological phenomena. Linking gene expression to morphological outcomes remains a grand challenge in biology, and new approaches are needed to begin to address this gap. Here, we implemented topological data analysis (TDA) to summarize the high dimensionality and noisiness of gene expression data using lens functions that delineate plant tissue and stress responses. Using this framework, we created a topological representation of the shape of gene expression across plant evolution, development, and environment for the phylogenetically diverse flowering plants. The TDA-based Mapper graphs form a well-defined gradient of tissues from leaves to seeds, or from healthy to stressed samples, depending on the lens function. This suggests that there are distinct and conserved expression patterns across angiosperms that delineate different tissue types or responses to biotic and abiotic stresses. Genes that correlate with the tissue lens function are enriched in central processes such as photosynthetic, growth and development, housekeeping, or stress responses. Together, our results highlight the power of TDA for analyzing complex biological data and reveal a core expression backbone that defines plant form and function. 
    more » « less
  2. Abstract Grasslands dominate the terrestrial landscape, and grasses have evolved complex and elegant strategies to overcome abiotic stresses. The C4 grasses are particularly stress tolerant and thrive in tropical and dry temperate ecosystems. Growing evidence suggests that the presence of C4 photosynthesis alone is insufficient to account for drought resilience in grasses, pointing to other adaptations as contributing to tolerance traits. The majority of grasses from the Chloridoideae subfamily are tolerant to drought, salt, and desiccation, making this subfamily a hub of resilience. Here, we discuss the evolutionary innovations that make C4 grasses so resilient, with a particular emphasis on grasses from the Chloridoideae (chloridoid) and Panicoideae (panicoid) subfamilies. We propose that a baseline level of resilience in chloridoid ancestors allowed them to colonize harsh habitats, and these environments drove selective pressure that enabled the repeated evolution of abiotic stress tolerance traits. Furthermore, we suggest that a lack of evolutionary access to stressful environments is partially responsible for the relatively poor stress resilience of major C4 crops compared to their wild relatives. We propose that chloridoid crops and the subfamily more broadly represent an untapped reservoir for improving resilience to drought and other abiotic stresses in cereals. 
    more » « less
  3. Desiccation tolerance is an ancient and complex trait that spans all major lineages of life on earth. Although important in the evolution of land plants, the mechanisms that underlay this complex trait are poorly understood, especially for vegetative desiccation tolerance (VDT). The lack of suitable closely related plant models that offer a direct contrast between desiccation tolerance and sensitivity has hampered progress. We have assembled high-quality genomes for two closely related grasses, the desiccation-tolerant Sporobolus stapfianus and the desiccation-sensitive Sporobolus pyramidalis . Both species are complex polyploids; S. stapfianus is primarily tetraploid, and S. pyramidalis is primarily hexaploid. S. pyramidalis undergoes a major transcriptome remodeling event during initial exposure to dehydration, while S. stapfianus has a muted early response, with peak remodeling during the transition between 1.5 and 1.0 grams of water (gH 2 O) g −1 dry weight (dw). Functionally, the dehydration transcriptome of S. stapfianus is unrelated to that for S. pyramidalis . A comparative analysis of the transcriptomes of the hydrated controls for each species indicated that S. stapfianus is transcriptionally primed for desiccation. Cross-species comparative analyses indicated that VDT likely evolved from reprogramming of desiccation tolerance mechanisms that evolved in seeds and that the tolerance mechanism of S. stapfianus represents a recent evolution for VDT within the Chloridoideae. Orthogroup analyses of the significantly differentially abundant transcripts reconfirmed our present understanding of the response to dehydration, including the lack of an induction of senescence in resurrection angiosperms. The data also suggest that failure to maintain protein structure during dehydration is likely critical in rendering a plant desiccation sensitive. 
    more » « less
  4. Grasses are among the most resilient plants, and some can survive prolonged desiccation in semiarid regions with seasonal rainfall. However, the genetic elements that distinguish grasses that are sensitive versus tolerant to extreme drying are largely unknown. Here, we leveraged comparative genomic approaches with the desiccation-tolerant grass Eragrostis nindensis and the related desiccation-sensitive cereal Eragrostis tef to identify changes underlying desiccation tolerance. These analyses were extended across C4 grasses and cereals to identify broader evolutionary conservation and divergence. Across diverse genomic datasets, we identified changes in chromatin architecture, methylation, gene duplications, and expression dynamics related to desiccation in E. nindensis . It was previously hypothesized that transcriptional rewiring of seed desiccation pathways confers vegetative desiccation tolerance. Here, we demonstrate that the majority of seed-dehydration–related genes showed similar expression patterns in leaves of both desiccation-tolerant and -sensitive species. However, we identified a small set of seed-related orthologs with expression specific to desiccation-tolerant species. This supports a broad role for seed-related genes, where many are involved in typical drought responses, with only a small subset of crucial genes specifically induced in desiccation-tolerant plants. 
    more » « less
  5. SUMMARY Resurrection plants can survive prolonged life without water (anhydrobiosis) in regions with seasonal drying. This desiccation tolerance requires the coordination of numerous cellular processes across space and time, and individual plant tissues face unique constraints related to their function. Here, we analyzed the complex, octoploid genome of the model resurrection plantCraterostigma(C. plantagineum), and surveyed spatial and temporal expression dynamics to identify genetic elements underlying desiccation tolerance. Homeologous genes within theCraterostigmagenome have divergent expression profiles, suggesting the subgenomes contribute differently to desiccation tolerance traits. TheCraterostigmagenome contains almost 200 tandemly duplicated early light‐induced proteins, a hallmark trait of desiccation tolerance, with massive upregulation under water deficit. We identified a core network of desiccation‐responsive genes across all tissues, but observed almost entirely unique expression dynamics in each tissue during recovery. Roots and leaves have differential responses related to light and photoprotection, autophagy and nutrient transport, reflecting their divergent functions. Our findings highlight a universal set of likely ancestral desiccation tolerance mechanisms to protect cellular macromolecules under anhydrobiosis, with secondary adaptations related to tissue function. 
    more » « less
  6. Abstract Teff (Eragrostis tef) is a cornerstone of food security in the Horn of Africa, where it is prized for stress resilience, grain nutrition, and market value. Here, we report a chromosome-scale assembly of allotetraploid teff (variety Dabbi) and patterns of subgenome dynamics. The teff genome contains two complete sets of homoeologous chromosomes, with most genes maintaining as syntenic gene pairs. TE analysis allows us to estimate that the teff polyploidy event occurred ~1.1 million years ago (mya) and that the two subgenomes diverged ~5.0 mya. Despite this divergence, we detect no large-scale structural rearrangements, homoeologous exchanges, or biased gene loss, in contrast to many other allopolyploids. The two teff subgenomes have partitioned their ancestral functions based on divergent expression across a diverse expression atlas. Together, these genomic resources will be useful for accelerating breeding of this underutilized grain crop and for fundamental insights into polyploid genome evolution. 
    more » « less