skip to main content


Search for: All records

Creators/Authors contains: "Parish, Meredith C."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract The wettest portion of the interior of western North America centers on the mountainous region spanning western Montana, Idaho, British Columbia, and Alberta. Inland ranges there capture the remnants of Pacific storms. Steep east–west hydroclimate gradients make the region sensitive to changes in inland-penetrating moisture that may have varied greatly during the Holocene. To investigate potential hydroclimate change, we produced a 7600-yr lake-level reconstruction from Silver Lake, located on the Montana–Idaho border. Ground-penetrating radar profiles and a transect of four shallow-water sediment cores that were dated using radiocarbon dating and tephrachronology revealed substantial changes in moisture through time. An organic-rich mud unit indicating wet and similar to modern conditions prior to 7000 cal yr BP is overlain by an erosional surface signifying drier than modern conditions from 7000–2800 cal yr BP. A subsequent time-transgressive increase in water levels from 2800–2300 cal yr BP is indicated by a layer of late Holocene muds, and is consistent with glacier expansion and increases in the abundance of mesic tree taxa in the region. Millennial-scale trends were likely driven by variations in orbital-scale forcing during the Holocene, but the regional outcomes probably depended upon factors such as the strength of the Aleutian Low, Pacific sea-surface temperature variability, and the frequency of atmospheric rivers over western North America. 
    more » « less
  2. Abstract

    Wildfires strongly influence forest ecosystem processes, including carbon and nutrient cycling, and vegetation dynamics. As fire activity increases under changing climate conditions, the ecological and biogeochemical resilience of many forest ecosystems remains unknown.

    To investigate the resilience of forest ecosystems to changing climate and wildfire activity over decades to millennia, we developed a 4800‐year high‐resolution lake‐sediment record from Silver Lake, Montana, USA (47.360° N, 115.566° W). Charcoal particles, pollen grains, element concentrations and stable isotopes of C and N serve as proxies of past changes in fire, vegetation and ecosystem processes such as nitrogen cycling and soil erosion, within a small subalpine forest watershed. A published lake‐level history from Silver Lake provides a local record of palaeohydrology.

    A trend towards increased effective moisture over the late Holocene coincided with a distinct shift in the pollen assemblage c. 1900 yr BP, resulting from increased subalpine conifer abundance. Fire activity, inferred from peaks in macroscopic charcoal, decreased significantly after 1900 yr BP, from one fire event every 126 yr (83–184 yr, 95% CI) from 4800 to 1900 yr BP, to one event every 223 yr (175–280 yr) from 1900 yr BP to present.

    Across the record, individual fire events were followed by two distinct decadal‐scale biogeochemical responses, reflecting differences in ecosystem impacts of fires on watershed processes. These distinct biogeochemical responses were interpreted as reflecting fire severity, highlighting (i) erosion, likely from large or high‐severity fires, and (ii) nutrient transfers and enhanced within‐lake productivity, likely from lower severity or patchier fires. Biogeochemical and vegetation proxies returned to pre‐fire values within decades regardless of the nature of fire effects.

    Synthesis. Palaeorecords of fire and ecosystem responses provide a novel view revealing past variability in fire effects, analogous to spatial variability in fire severity observed within contemporary wildfires. Overall, the palaeorecord highlights ecosystem resilience to fire across long‐term variability in climate and fire activity. Higher fire frequencies in past millennia relative to the 20th and 21st century suggest that northern Rocky Mountain subalpine ecosystems could remain resilient to future increases in fire activity, provided continued ecosystem recovery within decades.

     
    more » « less
  3. Abstract We employed the modern analog technique to quantitatively reconstruct temperature and precipitation over the past 2500 yr based on fossil pollen records from six high-elevation lakes in northern Colorado. Reconstructed annual temperatures for the study area did not deviate significantly from modern over the past 2500 yr despite hemispheric expressions of Medieval Climate Anomaly warmth and Little Ice Age cooling. Annual precipitation, however, shifted from lower than modern rates from 2500 to 1000 cal yr BP to higher than modern rates after 1000 cal yr BP, a greater than 100 mm increase in precipitation. Winter precipitation accounts for the majority of the change in annual precipitation, while summer precipitation rates did not change significantly over the past 2500 yr. The large change in winter precipitation rates from the first to second millennium of the Common Era is inferred from a shift in fossil pollen assemblages dominated by subalpine conifers, which have southern sites as modern analogs, to assemblages representing open subalpine vegetation with abundant Artemisia spp. (sagebrush), which have more northern modern analogs. The change helps to explain regional increases in lake levels and shifts in some isotopic and tree-ring data sets, highlighting the risk of large reductions in snowpack and water supplies in the Intermountain West. 
    more » « less