- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources3
- Resource Type
-
0001000002000000
- More
- Availability
-
30
- Author / Contributor
- Filter by Author / Creator
-
-
Parisini, Thomas (3)
-
Antsaklis, Panos (1)
-
Bin, Michelangelo (1)
-
Cao, Yongcan (1)
-
Cassandras, Christos G (1)
-
Dormido, Sebastian (1)
-
Hedengren, John (1)
-
Hespanha, João (1)
-
Jiang, Zhong-Ping (1)
-
Khalili, Mohsen (1)
-
Lamnabhi-Lagarrigue, Francoise (1)
-
Liu, Tong (1)
-
Murray, Richard M (1)
-
Notarnicola, Ivano (1)
-
Polycarpou, Marios M. (1)
-
Ranade, Gireeja (1)
-
Rossiter, John Anthony (1)
-
Visioli, Antonio (1)
-
Zhang, Xiaodong (1)
-
de_la_Torre, Luis (1)
-
- Filter by Editor
-
-
null (1)
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
The distributed optimization algorithm proposed by J. Wang and N. Elia in 2010 has been shown to achieve linear convergence for multi-agent systems with single-integrator dynamics. This paper extends their result, including the linear convergence rate, to a more complex scenario where the agents have heterogeneous multi-input multi-output linear dynamics and are subject to external disturbances and parametric uncertainties. Disturbances are dealt with via an internal-modelbased control design, and the interaction among the tracking error dynamics, average dynamics, and dispersion dynamics is analyzed through a composite Lyapunov function and the cyclic small-gain theorem. The key is to ensure a small enough stepsize for the convergence of the proposed algorithm, which is similar to the condition for time-scale separation in singular perturbation theory.more » « less
-
Rossiter, John Anthony; Cassandras, Christos G; Hespanha, João; Dormido, Sebastian; de_la_Torre, Luis; Ranade, Gireeja; Visioli, Antonio; Hedengren, John; Murray, Richard M; Antsaklis, Panos; et al (, Annual Reviews in Control)
-
Khalili, Mohsen; Zhang, Xiaodong; Cao, Yongcan; Polycarpou, Marios M.; Parisini, Thomas (, IEEE Transactions on Neural Networks and Learning Systems)null (Ed.)
An official website of the United States government
