skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Park, ByungUk"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The orientation of integral membrane proteins (IMPs) with respect to the membrane is established during protein synthesis and insertion into the membrane. After synthesis, IMP orientation is thought to be fixed due to the thermodynamic barrier for “flipping” protein loops or helices across the hydrophobic core of the membrane in a process analogous to lipid flip-flop. A notable exception is EmrE, a homodimeric IMP with an N-terminal transmembrane helix that can flip across the membrane until flipping is arrested upon dimerization. Understanding the features of the EmrE sequence that permit this unusual flipping behavior would be valuable for guiding the design of synthetic materials capable of translocating or flipping charged groups across lipid membranes. To elucidate the molecular mechanisms underlying flipping in EmrE and derive bioinspired design rules, we employ atomistic molecular dynamics simulations and enhanced sampling techniques to systematically investigate the flipping of truncated segments of EmrE. Our results demonstrate that a membrane-exposed charged glutamate residue at the center of the N-terminal helix lowers the energetic barrier for flipping (from ~12.1 kcal mol-1 to ~5.4 kcal mol-1) by stabilizing water defects and minimizing membrane perturbation. Comparative analysis reveals that the marginal hydrophobicity of this helix, rather than the marginal hydrophilicity of its loop, is the key determinant of flipping propensity. Our results further indicate that interhelical hydrogen bonding upon dimerization inhibits flipping. These findings establish several bioinspired design principles to govern flipping in related materials: (1) marginally hydrophobic helices with membrane-exposed charged groups promote flipping, (2) modulating protonation states of membrane-exposed groups tunes flipping efficiency, and (3) interhelical hydrogen bonding can be leveraged to arrest flipping. These insights provide a foundation for engineering synthetic peptides, engineered proteins, and biomimetic nanomaterials with controlled flipping or translocation behavior for applications in intracellular drug delivery and membrane protein design. 
    more » « less
    Free, publicly-accessible full text available May 9, 2026
  2. The majority of bioactive molecules act on membrane proteins or intracellular targets and therefore needs to partition into or cross biological membranes. Natural products often exhibit lipid modifications to facilitate critical molecule–membrane interactions, and in many cases their bioactivity is markedly reduced upon removal of a lipid group. However, despite its importance in nature, lipid-conjugation of small molecules is not commonly used in chemical biology and medicinal chemistry, and the effect of such conjugation has not been systematically studied. To understand the composition of lipids found in natural products, we carried out a chemoinformatic characterization of the “natural product lipidome”. According to this analysis, lipidated natural products predominantly contain saturated medium-chain lipids (MCLs), which are significantly shorter than the long-chain lipids (LCLs) found in membranes and lipidated proteins. To study the usefulness of such modifications in probe design, we systematically explored the effect of lipid conjugation on five different small molecule chemotypes and find that permeability, cellular retention, subcellular localization, and bioactivity can be significantly modulated depending on the type of lipid tail used. We demonstrate that MCL conjugation can render molecules cell-permeable and modulate their bioactivity. With all explored chemotypes, MCL-conjugates consistently exhibited superior uptake or bioactivity compared to LCL-conjugates and either comparable or superior uptake or bioactivity to short-chain lipid (SCL)-conjugates. Together, our findings suggest that conjugation of small molecules with MCLs could be a powerful strategy for the design of probes and drugs. 
    more » « less