skip to main content

Search for: All records

Creators/Authors contains: "Park, C."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Poster Abstract from The Protein Society Meeting in 2022 
    more » « less
    Free, publicly-accessible full text available December 26, 2023
  2. The work was presented at the Protein Society meeting in 2022 (poster and oral presentation). 
    more » « less
    Free, publicly-accessible full text available December 26, 2023
  3. Abstract

    The physical properties of minerals are modified by the high temperatures of volcanic lightning during explosive eruptions. Alteration involves rapid heating and volatilization, melting, and fusion of ash grains within the discharge channel, followed by rapid quenching into new glassy textures. High current impulse experiments reveal that lightning alters not only the morphology and mineralogy of volcanic ash but also its magnetic properties. We investigate lightning‐induced magnetic changes in five igneous minerals (<32 μm powders of albite, labradorite, augite, hornblende, and magnetite) by comparing hysteresis parameters before and after impulse experiments conducted at peak currents of 25 and 40 kA. Both the paramagnetic and ferrimagnetic behaviors of the samples were altered, which we interpret as a superposition of two processes. (a) Rapid melting allows iron contained within inclusions of Fe‐oxides and Fe‐bearing silicates to diffuse into the newly formed melt, thereby increasing the paramagnetism of the resulting glass. (b) Nucleation and growth of magnetite from the newly formed melt increases the ferrimagnetic behavior of the post‐experimental samples. Nominally non‐Fe‐bearing silicates like albite and labradorite have significantly increased paramagnetism and ferrimagnetism. Fe‐bearing silicates like augite and hornblende contain higher concentrations of ferrimagnetic inclusions, from which Fe diffuses into the newly formed melt, thereby increasing paramagnetism while decreasing ferrimagnetism. Experiments conducted on magnetite produced new magnetite crystals with dendritic habits. Although specific to volcanic ash, these results provide important insights into the magnetism of other materials affected by lightning on Earth, the Moon, and throughout the solar system.

    more » « less
  4. Abstract High-pressure electrical resistivity measurements reveal that the mechanical deformation of ultra-hard WB 2 during compression induces superconductivity above 50 GPa with a maximum superconducting critical temperature, T c of 17 K at 91 GPa. Upon further compression up to 187 GPa, the T c gradually decreases. Theoretical calculations show that electron-phonon mediated superconductivity originates from the formation of metastable stacking faults and twin boundaries that exhibit a local structure resembling MgB 2 (hP3, space group 191, prototype AlB 2 ). Synchrotron x-ray diffraction measurements up to 145 GPa show that the ambient pressure hP12 structure (space group 194, prototype WB 2 ) continues to persist to this pressure, consistent with the formation of the planar defects above 50 GPa. The abrupt appearance of superconductivity under pressure does not coincide with a structural transition but instead with the formation and percolation of mechanically-induced stacking faults and twin boundaries. The results identify an alternate route for designing superconducting materials. 
    more » « less
  5. Academic Editor: García-Aracil, Adela (Ed.)
    This is the first of two sequential papers describing the design and first-year implementation of a collaborative participatory action research effort between Sociedad Latina, a youth serving organization in Boston, Massachusetts, and Boston University. The collaboration aimed to develop and deliver a combined STEM and career development set of lessons for middle school Latinx youth. In the first paper, life design and the U.N. Sustainable Development Goals are described in relation to the rationale and the design of the career development intervention strategy that aims to help middle school youth discover the ways that learning advanced-STEM skills expand future decent work opportunities both within STEM and outside STEM, ultimately leading to an outcome of well-being and sustainable communities. In addition to providing evidence of career development intervention strategies, a qualitative analysis of the collaboration is described. The second paper will discuss two additional frameworks that guided the design and implementation of our work. As an example of translational research, the paper will provide larger national and regional contexts by describing system level career development interventions underway using Bronfenbrenner’s bioecological and person–process–context–time frameworks. 
    more » « less
  6. Free, publicly-accessible full text available March 1, 2024
  7. null (Ed.)
  8. null (Ed.)
  9. null (Ed.)