skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Park, Hogun"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Semi-supervised relational learning methods aim to classify nodes in a partially-labeled graph. While popular, existing methods using Graph Neural Networks (GNN) for semi-supervised relational learning have mainly focused on learning node representations by aggregating nearby attributes, and it is still challenging to leverage inferences about unlabeled nodes with few attributes—particularly when trying to exploit higher-order relationships in the network efficiently. To address this, we propose a Graph Neural Network architecture that incorporates patterns among the available class labels and uses (1) a Role Equivalence attention mechanism and (2) a mini-batch importance sampling method to improve efficiency when learning over high-order paths. In particular, our Role Equivalence attention mechanism is able to use nodes’ roles to learn how to focus on relevant distant neighbors, in order to adaptively reduce the increased noise that occurs when higher-order structures are considered. In experiments on six different real-world datasets, we show that our model (REGNN) achieves significant performance gains compared to other recent state-of-the-art baselines, particularly when higher-order paths are considered in the models. 
    more » « less