Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
While hydrogen-rich materials have been demonstrated to exhibit high Tcsuperconductivity at high pressures, there is an ongoing search for ternary, quaternary, and more chemically complex hydrides that achieve such high critical temperatures at much lower pressures. First-principles searches are impeded by the computational complexity of solving the Eliashberg equations for large, complex crystal structures. Here, we adopt a simplified approach using electronic indicators previously established to be correlated with superconductivity in hydrides. This is used to study complex hydride structures, which are predicted to exhibit promisingly high critical temperatures for superconductivity. In particular, we propose three classes of hydrides inspired by the Fm m RH structures that exhibit strong hydrogen network connectivity, as defined through the electron localization function. The first class [RH X Y] is based on a Pm m structure showing moderately high Tc, where the Tcestimate from electronic properties is compared with direct Eliashberg calculations and found to be surprisingly accurate. The second class of structures [(RH ) X YZ] improves on this with promisingly high density of states with dominant hydrogen character at the Fermi energy, typically enhancing Tc. The third class [(R H )(R H )X YZ] improves the strong hydrogen network connectivity by introducing anisotropy in the hydrogen network through a specific doping pattern. These design principles and associated model structures provide flexibility to optimize both Tcand the structural stability of complex hydrides.more » « less