skip to main content


Search for: All records

Creators/Authors contains: "Park, S."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available September 1, 2025
  2. Urban Land Surface Models (ULSMs) simulate energy and water exchanges between the urban surface and atmosphere. However, earlier systematic ULSM comparison projects assessed the energy balance but ignored the water balance, which is coupled to the energy balance. Here, we analyze the water balance representation in 19 ULSMs participating in the Urban‐PLUMBER project using results for 20 sites spread across a range of climates and urban form characteristics. As observations for most water fluxes are unavailable, we examine the water balance closure, flux timing, and magnitude with a score derived from seven indicators expecting better scoring models to capture the latent heat flux more accurately. We find that the water budget is only closed in 57% of the model‐site combinations assuming closure when annual total incoming fluxes (precipitation and irrigation) fluxes are within 3% of the outgoing (all other) fluxes. Results show the timing is better captured than magnitude. No ULSM has passed all water balance indicators for any site. Models passing more indicators do not capture the latent heat flux more accurately refuting our hypothesis. While output reporting inconsistencies may have negatively affected model performance, our results indicate models could be improved by explicitly verifying water balance closure and revising runoff parameterizations. By expanding ULSM evaluation to the water balance and related to latent heat flux performance, we demonstrate the benefits of evaluating processes with direct feedback mechanisms to the processes of interest. 
    more » « less
    Free, publicly-accessible full text available September 28, 2025
  3. Free, publicly-accessible full text available April 1, 2025
  4. Abstract

    We present JWST NIRCam (F356W and F444W filters) and MIRI (F770W) images and NIRSpec Integral Field Unit (IFU) spectroscopy of the young Galactic supernova remnant Cassiopeia A (Cas A) to probe the physical conditions for molecular CO formation and destruction in supernova ejecta. We obtained the data as part of a JWST survey of Cas A. The NIRCam and MIRI images map the spatial distributions of synchrotron radiation, Ar-rich ejecta, and CO on both large and small scales, revealing remarkably complex structures. The CO emission is stronger at the outer layers than the Ar ejecta, which indicates the re-formation of CO molecules behind the reverse shock. NIRSpec-IFU spectra (3–5.5μm) were obtained toward two representative knots in the NE and S fields that show very different nucleosynthesis characteristics. Both regions are dominated by the bright fundamental rovibrational band of CO in the two R and P branches, with strong [Arvi] and relatively weaker, variable strength ejecta lines of [Siix], [Caiv], [Cav], and [Mgiv]. The NIRSpec-IFU data resolve individual ejecta knots and filaments spatially and in velocity space. The fundamental CO band in the JWST spectra reveals unique shapes of CO, showing a few tens of sinusoidal patterns of rovibrational lines with pseudocontinuum underneath, which is attributed to the high-velocity widths of CO lines. Our results with LTE modeling of CO emission indicate a temperature of ∼1080 K and provide unique insight into the correlations between dust, molecules, and highly ionized ejecta in supernovae and have strong ramifications for modeling dust formation that is led by CO cooling in the early Universe.

     
    more » « less
    Free, publicly-accessible full text available June 24, 2025
  5. ABSTRACT

    JWST/NIRCam obtained high angular resolution (0.05–0.1 arcsec), deep near-infrared 1–5 $\mu$m imaging of Supernova (SN) 1987A taken 35 yr after the explosion. In the NIRCam images, we identify: (1) faint H2 crescents, which are emissions located between the ejecta and the equatorial ring, (2) a bar, which is a substructure of the ejecta, and (3) the bright 3–5 $\mu$m continuum emission exterior to the equatorial ring. The emission of the remnant in the NIRCam 1–2.3 $\mu$m images is mostly due to line emission, which is mostly emitted in the ejecta and in the hotspots within the equatorial ring. In contrast, the NIRCam 3–5 $\mu$m images are dominated by continuum emission. In the ejecta, the continuum is due to dust, obscuring the centre of the ejecta. In contrast, in the ring and exterior to the ring, synchrotron emission contributes a substantial fraction to the continuum. Dust emission contributes to the continuum at outer spots and diffuse emission exterior to the ring, but little within the ring. This shows that dust cooling and destruction time-scales are shorter than the synchrotron cooling time-scale, and the time-scale of hydrogen recombination in the ring is even longer than the synchrotron cooling time-scale. With the advent of high sensitivity and high angular resolution images provided by JWST/NIRCam, our observations of SN 1987A demonstrate that NIRCam opens up a window to study particle-acceleration and shock physics in unprecedented details, probed by near-infrared synchrotron emission, building a precise picture of how an SN evolves.

     
    more » « less
    Free, publicly-accessible full text available July 27, 2025