skip to main content

Search for: All records

Creators/Authors contains: "Parkinson, C."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The COVID-19 pandemic has extensively changed the state of psychological science from what research questions psychologists can ask to which methodologies psychologists can use to investigate them. In this article, we offer a perspective on how to optimize new research in the pandemic’s wake. Because this pandemic is inherently a social phenomenon—an event that hinges on human-to-human contact—we focus on socially relevant subfields of psychology. We highlight specific psychological phenomena that have likely shifted as a result of the pandemic and discuss theoretical, methodological, and practical considerations of conducting research on these phenomena. After this discussion, we evaluate metascientific issuesmore »that have been amplified by the pandemic. We aim to demonstrate how theoretically grounded views on the COVID-19 pandemic can help make psychological science stronger—not weaker—in its wake.« less
    Free, publicly-accessible full text available March 1, 2023
  2. Free, publicly-accessible full text available July 1, 2023
  3. Free, publicly-accessible full text available September 1, 2022
  4. A bstract Coherent production of J/ψ mesons is studied in ultraperipheral lead-lead collisions at a nucleon-nucleon centre-of-mass energy of 5 TeV, using a data sample collected by the LHCb experiment corresponding to an integrated luminosity of about 10 μb −1 . The J/ψ mesons are reconstructed in the dimuon final state and are required to have transverse momentum below 1 GeV. The cross-section within the rapidity range of 2 . 0 < y < 4 . 5 is measured to be 4 . 45 ± 0 . 24 ± 0 . 18 ± 0 . 58 mb, where the firstmore »uncertainty is statistical, the second systematic and the third originates from the luminosity determination. The cross-section is also measured in J/ψ rapidity intervals. The results are compared to predictions from phenomenological models.« less
    Free, publicly-accessible full text available July 1, 2023
  5. A bstract The NA62 experiment reports the branching ratio measurement $$ \mathrm{BR}\left({K}^{+}\to {\pi}^{+}\nu \overline{\nu}\right)=\left({10.6}_{-3.4}^{+4.0}\left|{}_{\mathrm{stat}}\right.\pm {0.9}_{\mathrm{syst}}\right)\times {10}^{-11} $$ BR K + → π + ν ν ¯ = 10.6 − 3.4 + 4.0 stat ± 0.9 syst × 10 − 11 at 68% CL, based on the observation of 20 signal candidates with an expected background of 7.0 events from the total data sample collected at the CERN SPS during 2016–2018. This provides evidence for the very rare K + → $$ {\pi}^{+}\nu \overline{\nu} $$ π + ν ν ¯ decay, observed with a significance of 3.4 σ . The experimentmore »achieves a single event sensitivity of (0 . 839 ± 0 . 054) × 10 − 11 , corresponding to 10.0 events assuming the Standard Model branching ratio of (8 . 4 ± 1 . 0) × 10 − 11 . This measurement is also used to set limits on BR( K + → π + X ), where X is a scalar or pseudo-scalar particle. Details are given of the analysis of the 2018 data sample, which corresponds to about 80% of the total data sample.« less
  6. A bstract A search for the K + → π + X decay, where X is a long-lived feebly interacting particle, is performed through an interpretation of the K + → $$ {\pi}^{+}\nu \overline{\nu} $$ π + ν ν ¯ analysis of data collected in 2017 by the NA62 experiment at CERN. Two ranges of X masses, 0–110 MeV /c 2 and 154–260 MeV /c 2 , and lifetimes above 100 ps are considered. The limits set on the branching ratio, BR( K + → π + X ), are competitive with previously reported searches in the first mass range,more »and improve on current limits in the second mass range by more than an order of magnitude.« less
  7. A bstract The NA62 experiment at the CERN SPS reports a study of a sample of 4 × 10 9 tagged π 0 mesons from K + → π + π 0 ( γ ), searching for the decay of the π 0 to invisible particles. No signal is observed in excess of the expected background fluctuations. An upper limit of 4 . 4 × 10 − 9 is set on the branching ratio at 90% confidence level, improving on previous results by a factor of 60. This result can also be interpreted as a model- independent upper limit onmore »the branching ratio for the decay K + → π + X , where X is a particle escaping detection with mass in the range 0.110–0.155 GeV /c 2 and rest lifetime greater than 100 ps. Model-dependent upper limits are obtained assuming X to be an axion-like particle with dominant fermion couplings or a dark scalar mixing with the Standard Model Higgs boson.« less
  8. Free, publicly-accessible full text available April 1, 2023