skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Partin, Judson_W"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Speleothem oxygen isotope records offer unique insights into Asian Monsoon evolution, with their precise chronologies used to identify abrupt climatic events. However, individual records are sometimes used to draw broad conclusions about global climate, without considering the dynamical context in which they exist. We present a robust framework for assessing the regional significance, and hence the potential global significance, of paleoclimate events, using the proposed Meghalayan age onset (associated with the “4.2 ka event”) as a case study. Analyzing 14 well‐dated speleothem oxygen isotope records from the SISAL v3 database and recent literature, we investigate the regional coherency of rapid shifts in Asian paleohydrology, which is the regional center of action for the proposed event, over the Holocene. Three robust methods fail to detect spatially coherent variability consistent with a 4.2 ka event across Asia, either because none exists or because it is of insufficient magnitude. In contrast, the 8.2 ka event is expressed in most records that resolve it. The absence of a clear isotopic excursion across this data set suggests that the “4.2 ka megadrought” was not global, with important implications for archeology and geochronology. This casts doubt on the proposal that the 4.2 ka event marks the onset of a new geologic age. We do, however, observe support for a gradual isotopic enrichment between 3.9 and 3.6 ka, followed by partial recovery—consistent with the “Double Drying” hypothesis and possibly related to changes in El Niño‐Southern Oscillation variability. 
    more » « less