- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources3
- Resource Type
-
03000000000
- More
- Availability
-
30
- Author / Contributor
- Filter by Author / Creator
-
-
Ji, Heng (3)
-
Parulian, Nikolaus Nova (2)
-
Cao, Shuyang (1)
-
Elsayed, Ahmed S. (1)
-
Huang, Luyang (1)
-
Li, Weijiang (1)
-
Myers, Skatje (1)
-
Palmer, Martha (1)
-
Parulian, Nikolaus (1)
-
Sun, Chenkai (1)
-
Wang, Lu (1)
-
Xiao, Jinfeng (1)
-
Zhai, ChengXiang (1)
-
Zhang, Zixuan (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Huang, Luyang ; Cao, Shuyang ; Parulian, Nikolaus ; Ji, Heng ; Wang, Lu ( , Proceedings of the Conference of the North American Chapter of the Association for Computational Linguistics (NAACL))The quadratic computational and memory complexities of large Transformers have limited their scalability for long document summarization. In this paper, we propose HEPOS, a novel efficient encoder-decoder attention with head-wise positional strides to effectively pinpoint salient information from the source. We further conduct a systematic study of existing efficient self-attentions. Combined with HEPOS, we are able to process ten times more tokens than existing models that use full attentions. For evaluation, we present a new dataset, GOVREPORT, with significantly longer documents and summaries. Results show that our models produce significantly higher ROUGE scores than competitive comparisons, including new state-of-the-art results on PubMed. Human evaluation also shows that our models generate more informative summaries with fewer unfaithful errors.more » « less
-
Zhang, Zixuan ; Parulian, Nikolaus Nova ; Ji, Heng ; Elsayed, Ahmed S. ; Myers, Skatje ; Palmer, Martha ( , Proc. The Joint Conference of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (ACL-IJCNLP 2021))