While hundreds of thousands of human whole genome sequences (WGS) have been collected in the effort to better understand genetic determinants of disease, these whole genome sequences have less frequently been used to study another major determinant of human health: the human virome. Using the unmapped reads from WGS of over 1000 families, we present insights into the human blood DNA virome, focusing particularly on human herpesvirus (HHV) 6A, 6B, and 7. In addition to extensively cataloguing the viruses detected in WGS of human whole blood and lymphoblastoid cell lines, we use the family structure of our dataset to show that household drives transmission of several viruses, and identify the Mendelian inheritance patterns characteristic of inherited chromsomally integrated human herpesvirus 6 (iciHHV-6). Consistent with prior studies, we find that 0.6% of our dataset’s population has iciHHV, and we locate candidate integration sequences for these cases. We document genetic diversity within exogenous and integrated HHV species and within integration sites of HHV-6. Finally, in the first observation of its kind, we present evidence that suggests widespread de novo HHV-6B integration and HHV-7 integration and reactivation in lymphoblastoid cell lines. These findings show that the unmapped read space of WGS is a promising source of data for virology research.
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract -
Abstract The unmapped readspace of whole genome sequencing data tends to be large but is often ignored. We posit that it contains valuable signals of both human infection and contamination. Using unmapped and poorly aligned reads from whole genome sequences (WGS) of over 1000 families and nearly 5000 individuals, we present insights into common viral, bacterial, and computational contamination that plague whole genome sequencing studies. We present several notable results: (1) In addition to known contaminants such as Epstein-Barr virus and phiX, sequences from whole blood and lymphocyte cell lines contain many other contaminants, likely originating from storage, prep, and sequencing pipelines. (2) Sequencing plate and biological sample source of a sample strongly influence contamination profile. And, (3) Y-chromosome fragments not on the human reference genome commonly mismap to bacterial reference genomes. Both experiment-derived and computational contamination is prominent in next-generation sequencing data. Such contamination can compromise results from WGS as well as metagenomics studies, and standard protocols for identifying and removing contamination should be developed to ensure the fidelity of sequencing-based studies.
-
Abstract Background Sequencing partial 16S rRNA genes is a cost effective method for quantifying the microbial composition of an environment, such as the human gut. However, downstream analysis relies on binning reads into microbial groups by either considering each unique sequence as a different microbe, querying a database to get taxonomic labels from sequences, or clustering similar sequences together. However, these approaches do not fully capture evolutionary relationships between microbes, limiting the ability to identify differentially abundant groups of microbes between a diseased and control cohort. We present sequence-based biomarkers (SBBs), an aggregation method that groups and aggregates microbes using single variants and combinations of variants within their 16S sequences. We compare SBBs against other existing aggregation methods (OTU clustering and
Micropheno orDiTaxa features) in several benchmarking tasks: biomarker discovery via permutation test, biomarker discovery via linear discriminant analysis, and phenotype prediction power. We demonstrate the SBBs perform on-par or better than the state-of-the-art methods in biomarker discovery and phenotype prediction.Results On two independent datasets, SBBs identify differentially abundant groups of microbes with similar or higher statistical significance than existing methods in both a permutation-test-based analysis and using linear discriminant analysis effect size. . By grouping microbes by SBB, we can identify several differentially abundant microbial groups (FDR <.1) between children with autism and neurotypical controls in a set of 115 discordant siblings.
Porphyromonadaceae ,Ruminococcaceae , and an unnamed species ofBlastocystis were significantly enriched in autism, whileVeillonellaceae was significantly depleted. Likewise, aggregating microbes by SBB on a dataset of obese and lean twins, we find several significantly differentially abundant microbial groups (FDR<.1). We observedMegasphaera andSutterellaceae highly enriched in obesity, andPhocaeicola significantly depleted. SBBs also perform on bar with or better than existing aggregation methods as features in a phenotype prediction model, predicting the autism phenotype with an ROC-AUC score of .64 and the obesity phenotype with an ROC-AUC score of .84.Conclusions SBBs provide a powerful method for aggregating microbes to perform differential abundance analysis as well as phenotype prediction. Our source code can be freely downloaded from
http://github.com/briannachrisman/16s_biomarkers .