- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources1
- Resource Type
-
0000000001000000
- More
- Availability
-
10
- Author / Contributor
- Filter by Author / Creator
-
-
Jäkle, Frieder (1)
-
Lalancette, Roger_A (1)
-
Patel, Ashvini (1)
-
Sahoo, Ashutosh (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
& Arnett, N. (0)
-
& Arya, G. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Doping of polycyclic aromatic hydrocarbons (PAHs) with boron and/or nitrogen is emerging as a powerful tool to tailor the electronic structure and photophysical properties. AsN‐doped analogues of anthracene,N,N‐dihydrophenazines play important roles as redox mediators, battery materials, luminophores, and photoredox catalysts. Although benzannulation has been used successfully as a structural constraint to control the excited state properties, fusion of the N‐aryl groups to the phenazine backbone has rarely been explored. Herein, we report the first examples of dihydrophenazines, in which the N‐aryl groups are fused to the phenazine backbone via B←N Lewis pair formation. This results in structural rigidification, locking the molecules in a bent conformation, while also modulating the electronic structure through molecular polarization. B─N fusion inBNPz1−BNPz3induces a quinoid resonance structure with significant C─N(py) double bond character and reduces the antiaromatic character of the central pyrazine ring. Borylation also lowers the HOMO/LUMO (highest occupied/lowest unoccupied molecular orbital) energies and engenders bathochromic shifts in the emission. Further rigidification in the solid state gives rise to enhanced emission quantum yields, consistent with aggregation‐induced emission enhancement (AIEE) observed upon water addition to solutions in tetrahydrofuran (THF). The demonstrated structural control and fine‐tuning of optoelectronic properties are of great significance to potential applications as emissive materials and in photocatalysis.more » « less
An official website of the United States government
