Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
ObjectiveSubglottic stenosis (SGS) may result from prolonged intubation where fibrotic scar tissue narrows the airway. The scar forms by differentiated myofibroblasts secreting excessive extracellular matrix (ECM). TGF‐β1 is widely accepted as a regulator of fibrosis; however, it is unclear how biomechanical pathways co‐regulate fibrosis. Therefore, we phenotyped fibroblasts from pediatric patients with SGS to explore how key signaling pathways, TGF‐β and Hippo, impact scarring and assess the impact of inhibiting these pathways with potential therapeutic small molecules SB525334 and DRD1 agonist dihydrexidine hydrochloride (DHX). MethodsLaryngeal fibroblasts isolated from subglottic as well as distal control biopsies of patients with evolving and maturing subglottic stenosis were assessed by α‐smooth muscle actin immunostaining and gene expression for α‐SMA, FN, HGF, and CTGF markers. TGF‐β and Hippo signaling pathways were modulated during TGF‐β1‐induced fibrosis using the inhibitor SB525334 or DHX and analyzed by RT‐qPCR for differential gene expression and atomic force microscopy for ECM stiffness. ResultsSGS fibroblasts exhibited higher α‐SMA staining and greater inflammatory cytokine and fibrotic marker expression upon TGF‐β1 stimulation (p < 0.05). SB525334 restored levels to baseline by reducing SMAD2/3 nuclear translocation (p < 0.0001) and pro‐fibrotic gene expression (p < 0.05). ECM stiffness of stenotic fibroblasts was greater than healthy fibroblasts and was restored to baseline by Hippo pathway modulation using SB525334 and DHX (p < 0.01). ConclusionWe demonstrate that distinct fibroblast phenotypes from diseased and healthy regions of pediatric SGS patients respond differently to TGF‐β1 stimulation, and SB525334 has the superior potential for subglottic stenosis treatment by simultaneously modulating TGF‐β and Hippo signaling pathways. Level of EvidenceNALaryngoscope, 134:287–296, 2024more » « less
-
Abstract Flare frequency distributions represent a key approach to addressing one of the largest problems in solar and stellar physics: determining the mechanism that counterintuitively heats coronae to temperatures that are orders of magnitude hotter than the corresponding photospheres. It is widely accepted that the magnetic field is responsible for the heating, but there are two competing mechanisms that could explain it: nanoflares or Alfvén waves. To date, neither can be directly observed. Nanoflares are, by definition, extremely small, but their aggregate energy release could represent a substantial heating mechanism, presuming they are sufficiently abundant. One way to test this presumption is via the flare frequency distribution, which describes how often flares of various energies occur. If the slope of the power law fitting the flare frequency distribution is above a critical threshold,α= 2 as established in prior literature, then there should be a sufficient abundance of nanoflares to explain coronal heating. We performed >600 case studies of solar flares, made possible by an unprecedented number of data analysts via three semesters of an undergraduate physics laboratory course. This allowed us to include two crucial, but nontrivial, analysis methods: preflare baseline subtraction and computation of the flare energy, which requires determining flare start and stop times. We aggregated the results of these analyses into a statistical study to determine thatα= 1.63 ± 0.03. This is below the critical threshold, suggesting that Alfvén waves are an important driver of coronal heating.more » « less
An official website of the United States government
