Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Polycrystalline ion conductors are widely used as solid electrolytes in energy storage technologies. However, they often exhibit poor ion transport across grain boundaries and pores. This work demonstrates that strategically tuning the mesoscale microstructures, including pore size, pore distribution, and chemical compositions of grain boundaries, can improve ion transport. Using LiTa2PO8as a case study, we have shown that the combination of LiF as a sintering agent with Hf4+implantation improves grain-grain contact, resulting in smaller, evenly distributed pores, reduced chemical contrast, and minimized nonconductive impurities. A suite of techniques has been used to decouple the effects of LiF and Hf4+. Specifically, LiF modifies particle shape and breaks large pores into smaller ones, while Hf4+addresses the chemical mismatches between grains and grain boundaries. Consequently, this approach achieves nearly two orders of magnitude improvement in ion conduction. Tuning mesoscale structures offers a cost-effective method for enhancing ion transport in polycrystalline systems and has notable implications for synthesizing high-performance ionic materials.more » « lessFree, publicly-accessible full text available May 16, 2026
-
Free, publicly-accessible full text available January 10, 2026
-
2LiX-GaF3(X = Cl, Br, I) electrolytes offer favorable features for solid-state batteries: mechanical pliability and high conductivities. However, understanding the origin of fast ion transport in 2LiX-GaF3has been challenging. The ionic conductivity order of 2LiCl-GaF3(3.20 mS/cm) > 2LiBr-GaF3(0.84 mS/cm) > 2LiI-GaF3(0.03 mS/cm) contradicts binary LiCl (10−12S/cm) < LiBr (10−10S/cm) < LiI (10−7S/cm). Using multinuclear7Li,71Ga,19F solid-state nuclear magnetic resonance and density functional theory simulations, we found that Ga(F,X)npolyanions boost Li+-ion transport by weakening Li+-X−interactions via charge clustering. In 2LiBr-GaF3and 2LiI-GaF3, Ga-X coordination is reduced with decreased F participation, compared to 2LiCl-GaF3. These insights will inform electrolyte design based on charge clustering, applicable to various ion conductors. This strategy could prove effective for producing highly conductive multivalent cation conductors such as Ca2+and Mg2+, as charge clustering of carboxylates in proteins is found to decrease their binding to Ca2+and Mg2+.more » « less
-
Abstract Polyanion rotations are often linked to cation diffusion, but the study of multiple polyanion systems is scarce due to the complexities in experimentally determining their dynamic interactions. This work focuses on BH4‐based argyrodites, synthesized to achieve a high conductivity of 11 mS cm−1. Advanced tools, including high‐resolution X‐ray diffraction, neutron pair distribution function analysis, and mutinuclear magic‐angle‐spinning nuclear magnetic resonance (NMR) spectroscopy and relaxometry, along with theoretical calculations, are employed to unravel the dynamic intricacies among the dual polyanion lattice and active charge carriers. The findings reveal that the anion sublattice of Li5.07PS4.07(BH4)1.93affords an even temporal distribution of Li among PS43−and BH4−, suggesting minimal trapping of the charge carriers. Moreover, the NMR relaxometry unveils rapid BH4−rotation on the order of ∼GHz, affecting the slower rotation of neighboring PS43−at ∼100 MHz. The PS43−rotation synchronizes with Li+motion and drives superionic transport. Thus, the PS43−and BH4−polyanions act as two‐staged dual motors, facilitating rapid Li+diffusion.more » « less