Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract We present a comprehensive analysis of 653 optical candidate counterparts reported during the third gravitational-wave (GW) observing run. Our sample concentrates on candidates from the 15 events (published in GWTC-2, GWTC-3, or not retracted on GraceDB) that had a >1% chance of including a neutron star in order to assess their viability as true kilonovae. In particular, we leverage tools available in real time, including pre-merger detections and cross-matching with catalogs (i.e., point-source, variable-star, quasar and host-galaxy redshift data sets), to eliminate 65% of candidates in our sample. We further employ spectroscopic classifications, late-time detections, and light-curve behavior analysesmore »Free, publicly-accessible full text available March 1, 2023
-
Abstract GW190814 was a compact object binary coalescence detected in gravitational waves by Advanced LIGO and Advanced Virgo that garnered exceptional community interest due to its excellent localization and the uncertain nature of the binary’s lighter-mass component (either the heaviest known neutron star, or the lightest known black hole). Despite extensive follow-up observations, no electromagnetic counterpart has been identified. Here, we present new radio observations of 75 galaxies within the localization volume at Δ t ≈ 35–266 days post-merger. Our observations cover ∼32% of the total stellar luminosity in the final localization volume and extend to later timescales than previouslymore »Free, publicly-accessible full text available December 1, 2022
-
Aims. We present the results of three commissioning H I observations obtained with the MeerKAT radio telescope. These observations make up part of the preparation for the forthcoming MHONGOOSE nearby galaxy survey, which is a MeerKAT large survey project that will study the accretion of gas in galaxies and the link between gas and star formation. Methods. We used the available H I data sets, along with ancillary data at other wavelengths, to study the morphology of the MHONGOOSE sample galaxy, ESO 302-G014, which is a nearby gas-rich dwarf galaxy. Results. We find that ESO 302-G014 has a lopsided, asymmetricmore »