skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Patil, Ashlesha"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Entanglement is essential for quantum information processing, but is limited by noise. We address this by developing high-yield entanglement distillation protocols with several advancements. (1) We extend the 2-to-1 recurrence entanglement distillation protocol to higher-rate n-to-(n−1) protocols that can correct any single-qubit errors. These protocols are evaluated through numerical simulations focusing on fidelity and yield. We also outline a method to adapt any classical error-correcting code for entanglement distillation, where the code can correct both bit-flip and phase-flip errors by incorporating Hadamard gates. (2) We propose a constant-depth decoder for stabilizer codes that transforms logical states into physical ones using single-qubit measurements. This decoder is applied to entanglement distillation protocols, reducing circuit depth and enabling protocols derived from high-performance quantum error-correcting codes. We demonstrate this by evaluating the circuit complexity for entanglement distillation protocols based on surface codes and quantum convolutional codes. (3) Our stabilizer entanglement distillation techniques advance quantum computing. We propose a fault-tolerant protocol for constant-depth encoding and decoding of arbitrary states in surface codes, with potential extensions to more general quantum low-density parity-check codes. This protocol is feasible with state-of-the-art reconfigurable atom arrays and surpasses the limits of conventional logarithmic depth encoders. Overall, our study integrates stabilizer formalism, measurement-based quantum computing, and entanglement distillation, advancing both quantum communication and computing. 
    more » « less
    Free, publicly-accessible full text available March 1, 2026
  2. Abstract We develop a protocol for entanglement generation in the quantum internet that allows a repeater node to usen-qubit Greenberger-Horne-Zeilinger (GHZ) projective measurements that can fusensuccessfully entangledlinks, i.e., two-qubit entangled Bell pairs shared acrossnnetwork edges, incident at that node. Implementingn-fusion, forn ≥ 3, is in principle not much harder than 2-fusions (Bell-basis measurements) in solid-state qubit memories. If we allow even 3-fusions at the nodes, we find—by developing a connection to a modified version of the site-bond percolation problem—that despite lossy (hence probabilistic) link-level entanglement generation, and probabilistic success of the fusion measurements at nodes, one can generate entanglement between end parties Alice and Bob at a rate that stays constant as the distance between them increases. We prove that this powerful network property is not possible to attain with any quantum networking protocol built with Bell measurements and multiplexing alone. We also design a two-party quantum key distribution protocol that converts the entangled states shared between two nodes into a shared secret, at a key generation rate that is independent of the distance between the two parties. 
    more » « less
  3. In a quantum network that successfully creates links—shared Bell states between neighboring repeater nodes—with probability p in each time slot, and performs Bell State Measurements at nodes with success probability q < 1, the end-to-end entanglement generation rate drops exponentially with the distance between consumers, despite multi-path routing. If repeaters can perform multi-qubit projective measurements in the GHZ basis that succeed with probability q, the rate does not change with distance in a certain (p,q) region, but decays exponentially outside. This region where the distance-independent rate occurs is the super-critical region of a new percolation problem. We extend this GHZ protocol to incorporate a time-multiplexing blocklength k, the number of time slots over which a repeater can mix-and-match successful links to perform fusion on. As k increases, the super-critical region expands. For a given (p,q), the entanglement rate initially increases with k, and once inside the super-critical region for a high enough k, it decays as 1/k GHZ states per time slot. When memory coherence time exponentially distributed with mean μ is incorporated, it is seen that increasing k does not indefinitely increase the super-critical region; it has a hard μ-dependent limit. Finally, we find that incorporating space-division multiplexing, i.e., running the above protocol independently in up to d disconnected network regions, where d is the network’s node degree, one can go beyond the 1 GHZ state per time slot rate that the above randomized local-link-state protocol cannot surpass. As (p,q) increases, one can approach the ultimate min-cut entanglement-generation capacity of d GHZ states per slot. 
    more » « less