skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Patle, Kalyani"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. This paper presents a framework for cloud users who wish to specify their experiments in the P4 language and map them to FPGAs in the Open Cloud Testbed (OCT). OCT consists of P4-enabled FPGA nodes that are directly connected to the network via 100 gigabit Ethernet connections, and which support runtime reconfiguration. Cloud users can quickly prototype and deploy their P4 applications through our framework, which provides the necessary infrastructure including a network interface shell for the P4 logic. We have provided several examples using this framework that demonstrate designs running at the 100 GbE line rate with the support of runtime reconfiguration for P4 functions. By combining an existing network interface shell and P4 toolchain on FPGAs, we offer a framework that enables users to rapidly execute their P4 experiments in real time on FPGAs. 
    more » « less
  2. This paper presents a framework for cloud users who wish to specify their experiments in the P4 language and map them to FPGAs in the Open Cloud Testbed (OCT). OCT consists of P4-enabled FPGA nodes that are directly connected to the network via 100 gigabit Ethernet connections, and which support runtime reconfiguration. Cloud users can quickly prototype and deploy their P4 applications through our framework, which provides the necessary infrastructure including a network interface shell for the P4 logic. We have provided several examples using this framework that demonstrate designs running at the 100 GbE line rate with the support of runtime reconfiguration for P4 functions. By combining an existing network interface shell and P4 toolchain on FPGAs, we offer a framework that enables users to rapidly execute their P4 experiments in real time on FPGAs. 
    more » « less
  3. The Open Cloud Testbed (OCT) provides nodes with Field Programmable Gate Arrays (FPGAs) that are under the complete control of the user and are directly attached to a network switch via two 100Gbps connections. We provide TCP and UDP stacks on the FPGAs. In addition, users have the ability to experiment with their own protocol. We present several experiments which make use of this capability including TCP throughput measurements, an encryption/decryption example, and machine learning inference split across two FPGAs where the images are input on one node and the labelled output available on a second node. The testbed is available for researchers to perform their own experiments, and includes a development platform that allows users to create FPGA applications. Network measurement results show we achieve close to peak bandwidth by tuning appropriate parameters. 
    more » « less