The total energy transfer from the solar wind to the magnetosphere is governed by the reconnection rate at the magnetosphere edges as the Z‐component of interplanetary magnetic field (IMF
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract B z ) turns southward. The geomagnetic storm on 21–22 January 2005 is considered to be anomalous as the SYM‐H index that signifies the strength of ring current, decreases and had a sustained trough value of −101 nT lasting more than 6 hr under northward IMFB z conditions. In this work, the standard WINDMI model is utilized to estimate the growth and decay of magnetospheric currents by using several solar wind‐magnetosphere coupling functions. However, it is found that the WINDMI model driven by any of these coupling functions is not fully able to explain the decrease of SYM‐H under northward IMFB z . A dense plasma sheet along with signatures of a highly stretched magnetosphere was observed during this storm. The SYM‐H variations during the entire duration of the storm were only reproduced after modifying the WINDMI model to account for the effects of the dense plasma sheet. The limitations of directly driven models relying purely on the solar wind parameters and not accounting for the state of the magnetosphere are highlighted by this work. -
Abstract The effects of strong magnetic fields on the deconfinement phase transition expected to take place in the interior of massive neutron stars are studied in detail for the first time. For hadronic matter, the very general density-dependent relativistic mean field model is employed, while the simple, but effective vector-enhanced bag model is used to study quark matter. Magnetic-field effects are incorporated into the matter equation of state and in the general-relativity solutions, which also satisfy Maxwell’s equations. We find that for large values of magnetic dipole moment, the maximum mass, canonical mass radius, and dimensionless tidal deformability obtained for stars using spherically symmetric Tolman–Oppenheimer–Volkoff (TOV) equations and axisymmetric solutions attained through the LORENE library differ considerably. The deviations depend on the stiffness of the equation of state and on the star mass being analyzed. This points to the fact that, unlike what was assumed previously in the literature, magnetic field thresholds for the approximation of isotropic stars and the acceptable use of TOV equations depend on the matter composition and interactions.
-
We report a search for a heavy neutral lepton (HNL) that mixes predominantly with. The search utilizes data collected with the Belle detector at the KEKB asymmetric energycollider. The data sample was collected at and just below the center-of-mass energies of theandresonances and has an integrated luminosity of, corresponding toevents. We search for production of the HNL (denoted) in the decayfollowed by its decay via. The search focuses on the parameter-space region in which the HNL is long-lived, so that theoriginate from a common vertex that is significantly displaced from the collision point of the KEKB beams. Consistent with the expected background yield, one event is observed in the data sample after application of all the event-selection criteria. We report limits on the mixing parameter of the HNL with theneutrino as a function of the HNL mass.
Published by the American Physical Society 2024 Free, publicly-accessible full text available June 1, 2025 -
A bstract We report a search for the charged-lepton flavor violation in Υ(2
S ) →ℓ ∓τ ± (ℓ =e, μ ) decays using a 25 fb− 1Υ(2S ) sample collected by the Belle detector at the KEKBe +e − asymmetric-energy collider. We find no evidence for a signal and set upper limits on the branching fractions ( ) at 90% confidence level. We obtain the most stringent upper limits:$$ \mathcal{B} $$ (Υ(2$$ \mathcal{B} $$ S )→ μ ∓τ ± )< 0. 23× 10− 6and (Υ(2$$ \mathcal{B} $$ S )→ e ∓τ ± )< 1. 12× 10− 6. -
We measure the branching fraction of the decayusing data collected with the Belle II detector. The data contain 387 millionpairs produced incollisions at theresonance. We reconstructdecays from an analysis of the distributions of theenergy and thehelicity angle. We determine the branching fraction to be, in agreement with previous results. Our measurement improves the relative precision of the world average by more than a factor of two.
Published by the American Physical Society 2024 Free, publicly-accessible full text available June 1, 2025