skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Patrignani, Marco"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Cryptographic library developers take care to ensure their library does not leak secrets even when there are (inevitably) exploitable vulnerabilities in the applications the library is linked against. To do so, they choose some class of application vulnerabilities to defend against and hardcode protections against those vulnerabilities in the library code. A single set of choices is a poor fit for all contexts: a chosen protection could impose unnecessary overheads in contexts where those attacks are impossible, and an ignored protection could render the library insecure in contexts where the attack is feasible. We introduce RoboCop, a new methodology and toolchain for building secure and efficient applications from cryptographic libraries, via four contributions. First, we present an operational semantics that describes the behavior of a (cryptographic) library executing in the context of a potentially vulnerable application so that we can precisely specify what different attackers can observe. Second, we use our semantics to define a novel security property, Robust Constant Time (RCT), that defines when a cryptographic library is secure in the context of a vulnerable application. Crucially, our definition is parameterized by an attacker model, allowing us to factor out the classes of attackers that a library may wish to secure against. This refactoring yields our third contribution: a compiler that can synthesize bespoke cryptographic libraries with security tailored to the specific application context against which the library will be linked, guaranteeing that the library is RCT in that context. Finally, we present an empirical evaluation that shows the RoboCop compiler can automatically generate code to efficiently protect a wide range (over 500) of cryptographic library primitives against three classes of attacks: read gadgets (due to application memory safety vulnerabilities), speculative read gadgets (due to application speculative execution vulnerabilities), and concurrent observations (due to application threads), with performance overhead generally under 2% for protections from read gadgets and under 4% for protections from speculative read gadgets, thus freeing library developers from making one-size-fits-all choices between security and performance. 
    more » « less
    Free, publicly-accessible full text available June 10, 2026
  2. Most programs compiled to WebAssembly (Wasm) today are written in unsafe languages like C and C++. Unfortunately, memory-unsafe C code remains unsafe when compiled to Wasm—and attackers can exploit buffer overflows and use-after-frees in Wasm almost as easily as they can on native platforms. Memory- Safe WebAssembly (MSWasm) proposes to extend Wasm with language-level memory-safety abstractions to precisely address this problem. In this paper, we build on the original MSWasm position paper to realize this vision. We give a precise and formal semantics of MSWasm, and prove that well-typed MSWasm programs are, by construction, robustly memory safe. To this end, we develop a novel, language-independent memory-safety property based on colored memory locations and pointers. This property also lets us reason about the security guarantees of a formal C-to-MSWasm compiler—and prove that it always produces memory-safe programs (and preserves the semantics of safe programs). We use these formal results to then guide several implementations: Two compilers of MSWasm to native code, and a C-to-MSWasm compiler (that extends Clang). Our MSWasm compilers support different enforcement mechanisms, allowing developers to make security-performance trade-offs according to their needs. Our evaluation shows that on the PolyBenchC suite, the overhead of enforcing memory safety in software ranges from 22% (enforcing spatial safety alone) to 198% (enforcing full memory safety), and 51.7% when using hardware memory capabilities for spatial safety and pointer integrity. More importantly, MSWasm’s design makes it easy to swap between enforcement mechanisms; as fast (especially hardware-based) enforcement techniques become available, MSWasm will be able to take advantage of these advances almost for free. 
    more » « less