skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, May 16 until 2:00 AM ET on Saturday, May 17 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Pattengale, Brian"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Sadwick, Laurence P.; Yang, Tianxin (Ed.)
  2. null (Ed.)
  3. Abstract 1T-MoS2and single-atom modified analogues represent a highly promising class of low-cost catalysts for hydrogen evolution reaction (HER). However, the role of single atoms, either as active species or promoters, remains vague despite its essentiality toward more efficient HER. In this work, we report the unambiguous identification of Ni single atom as key active sites in the basal plane of 1T-MoS2(Ni@1T-MoS2) that result in efficient HER performance. The intermediate structure of this Ni active site under catalytic conditions was captured by in situ X-ray absorption spectroscopy, where a reversible metallic Ni species (Ni0) is observed in alkaline conditions whereas Ni remains in its local structure under acidic conditions. These insights provide crucial mechanistic understanding of Ni@1T-MoS2HER electrocatalysts and suggest that the understanding gained from such in situ studies is necessary toward the development of highly efficient single-atom decorated 1T-MoS2electrocatalysts. 
    more » « less
  4. Owing to their porous structure and tunable framework, zeolitic imidazolate frameworks (ZIFs) have garnered considerable attention as promising photocatalytic materials. However, little is known regarding their photophysical properties. In this work, we report the photoinduced charge separation dynamics in a ZIF-67 thin film through interfacial electron transfer (ET) to methylene blue (MB + ) via ultrafast transient absorption spectroscopy. We show that the ET process occurs through two distinct pathways, including an ultrafast (<200 fs) process from the [Co II (mim) 2 ] units located on the surface of ZIF-67 film that are directly in contact with MB + and a relatively slower ET process with a 101.4 ps time constant from the units in the bulk of the film that were isolated from MB + by the surface units. This first direct evidence of the ET process from ZIF-67 to electron acceptor strongly suggests that ZIF materials may be used as intrinsic photocatalytic materials rather than inert hosts. 
    more » « less