skip to main content


Search for: All records

Creators/Authors contains: "Patterson, Courtney M."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Heat waves are becoming more frequent and intense with climate change, but the demographic and evolutionary consequences of heat waves are rarely investigated in herbaceous plant species. We examine the consequences of a short but extreme heat wave in Oregon populations of the common yellow monkeyflower (Mimulus guttatus) by leveraging a common garden experiment planted with range‐wide populations and observational studies of 11 local populations. In the common garden, 89% of seedlings died during the heat wave including >96% of seedlings from geographically local populations. Some populations from hotter and drier environments had higher fitness, however, others from comparable environments performed poorly. Observational studies of local natural populations drastically differed in the consequences of the heat wave—one population was completely extirpated and nearly half had a >50% decrease in fitness. However, a few populations hadgreaterfitness during the heat wave year. Differences in mortality corresponded to the impact of the heat wave on soil moisture—retention of soil moisture throughout the heat wave led to greater survivorship. Our results suggest that not all populations experience the same intensity or degree of mortality during extreme events and such heterogeneity could be important for genetic rescue or to facilitate the distribution of adaptive variants throughout the region.

     
    more » « less
  2. Abstract Premise Annual plants often exhibit drought‐escape and avoidance strategies to cope with limited water availability. Determining the extent of variation and factors underlying the evolution of divergent strategies is necessary for determining population responses to more frequent and severe droughts. Methods We leveraged five Mimulus guttatus populations collected across an aridity gradient within manipulative drought and quantitative genetics experiments to examine constitutive and terminal‐drought induced responses in drought resistance traits. Results Populations varied considerably in drought‐escape‐ and drought‐avoidance‐associated traits. The most mesic population demonstrated a unique resource conservative strategy. Xeric populations exhibited extreme plasticity when exposed to terminal drought that included flowering earlier at shorter heights, increasing water‐use efficiency, and shifting C:N ratios. However, plasticity responses also differed between populations, with two populations slowing growth rates and flowering at earlier nodes and another population increasing growth rate. While nearly all traits were heritable, phenotypic correlations differed substantially between treatments and often, populations. Conclusions Our results suggest drought resistance strategies of populations may be finely adapted to local patterns of water availability. Substantial plastic responses suggest that xeric populations can already acclimate to drought through plasticity, but populations not frequently exposed to drought may be more vulnerable. 
    more » « less