skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Paul, Ryan C"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Results of a previous aerodynamics study conducted over a wing that exhibits the Prandtl Bell Spanload were implemented into a simulation environment with the intent of studying unique flight characteristics that are theorized to be presented by this spanload. However, early simulations over the dynamics show that the yawing moment due to roll rate is of higher effect than the yaw moment due to aileron deflection angle. This over-prediction of the roll-yaw coupling term has been called into question. A new method is to be tested, which implements a compact vortex-lattice (CVLM) formulation, to show the difference between the flight dynamics predicted by this new method and the stability derivative method currently in use. The analysis utilizes two initial conditions to test the differences as the dynamics propagate through time. The first, a large initial bank angle, leads to the stabiltiy derivative method diverging while the CVLM results show this to not be the case. The second condition, a wind-field representative of a stable nocturnal boundary layer over the ground, leads to much more agreement between methods before divergence occurs due to a velocity higher than that of the stability derivative linearization point. It is then agreed that, since CVLM cannot predict stall effects and other nonlinear flight regions, a hybrid approach is proposed that takes advantage of the roll-yaw coupling prediction of the CVLM and the range of condition available to the stability derivative method. 
    more » « less