Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
In this study, interactions of the catalytically active binuclear form of glycerophosphodiesterase (GpdQ) with four chemically diverse substrates, i.e. NPP (a phosphomonoester), BNPP and GPE (both phosphodiesters), and paraoxon (a phosphotriester) have been investigated using all-atom molecular dynamics (MD) simulations. The roles of metal ions and key amino acid residues, coordination flexibility, and dynamic transformations in all enzyme–substrate complexes have been elucidated. The roles of important first and second coordination shell residues in substrate binding and coordination flexibility of the enzyme suggested by simulations are supported by experimental data. The chemical nature of the substrate is found to influence the mode of binding, electrostatic surface potential, metal–metal distance, and reorganization of the active site. The experimentally proposed association between the substrate binding and coordination flexibility is analyzed using principal component analysis (PCA), movements of loops, and root-mean-square-fluctuations (RMSF) as parameters. The PCA of these substrates provides different energy basins, i.e. one, three, two and five for NPP, BNPP, GPE, and paraoxon, respectively. Additionally, the area of an irregular hexagon (268.3, 288.9, 350.8, and 362.5 Å 2 ) formed by the residues on these loops illustrates their distinct motions. The substrate binding free energies of NPP, BNPP, and GPE are quite close (22.4–24.3 kcal mol −1 ), but paraoxon interacts with the smallest binding free energy (14.1 kcal mol −1 ). The metal binding energies in the presence of these substrates are substantially different, i.e. the lowest for NPP and the highest for paraoxon. These results thus provide deeper insight into the chemical promiscuity and coordination flexibility of this important enzyme.more » « less
-
In this study, mechanisms of hydrolysis of all four chemically diverse cleavage sites of human serum albumin (HSA) by [Zr(OH)(PW11O39)]4−(ZrK) have been investigated using the hybrid two‐layer QM/MM (ONIOM) method. These reactions have been proposed to occur through the following two mechanisms: internal attack (IA) and water assisted (WA). In both mechanisms, the cleavage of the peptide bond in the Cys392‐Glu393 site of HSA is predicted to occur in the rate‐limiting step of the mechanism. With the barrier of 27.5 kcal/mol for the hydrolysis of this site, the IA mechanism is found to be energetically more favorable than the WA mechanism (barrier = 31.6 kcal/mol). The energetics for the IA mechanism are in line with the experimentally measured values for the cleavage of a wide range of dipeptides. These calculations also suggest an energetic preference (Cys392‐Glu393, Ala257‐Asp258, Lys313‐Asp314, and Arg114‐Leu115) for the hydrolysis of all four sites of HSA. © 2018 Wiley Periodicals, Inc.