skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Paulding, David"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT Heterozygous variants in SOX10 cause congenital syndromes affecting pigmentation, digestion, hearing, and neural development, primarily attributable to failed differentiation or loss of non-skeletal neural crest derivatives. We report here an additional, previously undescribed requirement for Sox10 in bone mineralization. Neither crest- nor mesoderm-derived bones initiate mineralization on time in zebrafish sox10 mutants, despite normal osteoblast differentiation and matrix production. Mutants are deficient in the Trpv6+ ionocytes that take up calcium from the environment, resulting in severe calcium deficiency. As these ionocytes derive from ectoderm, not crest, we hypothesized that the primary defect resides in a separate organ that systemically regulates ionocyte numbers. RNA sequencing revealed significantly elevated stanniocalcin (Stc1a), an anti-hypercalcemic hormone, in sox10 mutants. Stc1a inhibits calcium uptake in fish by repressing trpv6 expression and Trpv6+ ionocyte proliferation. Epistasis assays confirm excess Stc1a as the proximate cause of the calcium deficit. The pronephros-derived glands that synthesize Stc1a interact with sox10+ cells, but these cells are missing in mutants. We conclude that sox10+ crest-derived cells non-autonomously limit Stc1a production to allow the inaugural wave of calcium uptake necessary to initiate bone mineralization. 
    more » « less