skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Paulius, David"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. It is imperative that robots can understand natural language commands issued by humans. Such commands typically contain verbs that signify what action should be performed on a given object and that are applicable to many objects. We propose a method for generalizing manipulation skills to novel objects using verbs. Our method learns a probabilistic classifier that determines whether a given object trajectory can be described by a specific verb. We show that this classifier accurately generalizes to novel object categories with an average accuracy of 76.69% across 13 object categories and 14 verbs. We then perform policy search over the object kinematics to find an object trajectory that maximizes classifier prediction for a given verb. Our method allows a robot to generate a trajectory for a novel object based on a verb, which can then be used as input to a motion planner. We show that our model can generate trajectories that are usable for executing five verb commands applied to novel instances of two different object categories on a real robot. 
    more » « less
  2. null (Ed.)
  3. To represent motions from a mechanical point of view, this paper explores motion embedding using the motion taxonomy. With this taxonomy, manipulations can be described and represented as binary strings called motion codes. Motion codes capture mechanical properties, such as contact type and trajectory, that should be used to define suitable distance metrics between motions or loss functions for deep learning and reinforcement learning. Motion codes can also be used to consolidate aliases or cluster motion types that share similar properties. Using existing data sets as a reference, we discuss how motion codes can be created and assigned to actions that are commonly seen in activities of daily living based on intuition as well as real data. Motion codes are compared to vectors from pre-trained Word2Vec models, and we show that motion codes maintain distances that closely match the reality of manipulation. 
    more » « less
  4. To represent motions from a mechanical point of view, this paper explores motion embedding using the motion taxonomy. With this taxonomy, manipulations can be described and represented as binary strings called motion codes. Motion codes capture mechanical properties, such as contact type and trajectory, that should be used to define suitable distance metrics between motions or loss functions for deep learning and rein- forcement learning. Motion codes can also be used to consolidate aliases or cluster motion types that share similar properties. Using existing data sets as a reference, we discuss how motion codes can be created and assigned to actions that are commonly seen in activities of daily living based on intuition as well as real data. Motion codes are compared to vectors from pre-trained Word2Vec models, and we show that motion codes maintain distances that closely match the reality of manipulation. 
    more » « less