skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Paulos, Abigail Harvey"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract In Sub-Saharan Africa (SSA), over 75% of households lack on-premises water access, requiring residents to spend time walking to collect water from outside their homes – a time burden that falls disproportionately on women and girls. Climate change is predicted to alter precipitation and temperature patterns in SSA, which could impact household water access. Here, we use spatial first differences to assess the causal effects of weather on water fetching walk time using household survey data (n = 979,759 observations from 31 countries) merged with geo- and temporally-linked precipitation and temperature data over time periods ranging from 7 to 365 days. We find increases in precipitation reduce water fetching times; a 1 cm increase in weekly rainfall over the past year decreases walking time by 3.5 min. Higher temperatures increase walk times, with a 1°C increase in temperature over the past year increasing walking time by 0.76 min. Rural household water fetching times are more impacted by recent weather compared to urban households; however, electricity access in rural communities mitigates the effect. Our findings suggest that future climate change will increase the water fetching burden in SSA, but that co-provision of electricity and water infrastructure may be able to alleviate this burden. 
    more » « less
    Free, publicly-accessible full text available December 1, 2026