skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Paulson, Andrew E"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Applying solutions of matrix or derivatization agent via microdroplets is a common sample preparation technique for matrix-assisted laser desorption/ionization-mass spectrometry imaging (MALDI-MSI) experiments. Mobilized nebulizer sprayers are commonly used to create a homogeneous matrix or reagent layer across large surfaces. Electrospray devices have also been used to produce microdroplets for the same purpose but are rarely used for large tissues due to their immobility. Herein, we present a movable electrospray device that can be used for large tissue sample preparation by a simple modification to an automatic commercial nebulizer device. As demonstrated for on-tissue chemical derivatization (OTCD) with Girard's reagent T using a mimetic tissue model, the sprayer has the additional benefit of being able to investigate reaction acceleration in OTCD when comparing electrostatically charged spray to electrostatically neutral spray. Finally, MALDI-MSI of fatty alde-hydes is successfully demonstrated in rat brain tissues using this device for both OTCD and matrix application. 
    more » « less
  2. Acetyl-TAG (3-acetyl-1,2-diacylglycerol), unique triacylglycerols (TAG) possessing an acetate group at thesn-3 position, exhibit valuable properties, such as reduced viscosity and freezing points. Previous attempts to engineer acetyl-TAG production in oilseed crops did not achieve the high levels found in naturally producingEuonymusseeds. Here, we demonstrate the successful generation of camelina and pennycress transgenic lines accumulating nearly pure acetyl-TAG at 93 mol% and 98 mol%, respectively. These ultrahigh acetyl-TAG synthesizing lines were created using gene-editedFATTY ACID ELONGASE1(FAE1) mutant lines as an improved genetic background to increase levels of acetyl-CoA available for acetyl-TAG synthesis mediated by the expression of EfDAcT, a high-activity diacylglycerol acetyltransferase isolated fromEuonymus fortunei. Combining EfDAcT expression with suppression of the competing TAG-synthesizing enzyme DGAT1 further enhanced acetyl-TAG accumulation. These ultrahigh levels of acetyl-TAG exceed those in earlier engineered oilseeds and are equivalent or greater than those inEuonymusseeds. Imaging of lipid localization in transgenic seeds revealed that the low amounts of residual TAG were mostly confined to the embryonic axis. Similar spatial distributions of specific TAG and acetyl-TAG molecular species, as well as their probable diacylglycerol (DAG) precursors, provide additional evidence that acetyl-TAG and TAG are both synthesized from the same tissue-specific DAG pools. Remarkably, this ultrahigh production of acetyl-TAG in transgenic seeds exhibited minimal negative effects on seed properties, highlighting the potential for production of designer oils required for economical biofuel industries. 
    more » « less