- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources1
- Resource Type
-
0000000001000000
- More
- Availability
-
10
- Author / Contributor
- Filter by Author / Creator
-
-
Amassian, Aram (1)
-
Bratina, Gvido (1)
-
Li, Ruipeng (1)
-
Müller, Christian (1)
-
Pavlica, Egon (1)
-
Silva, Carlos (1)
-
Stingelin, Natalie (1)
-
Yu, Liyang (1)
-
Zhong, Yufei (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Semiconducting mesocrystalline bulk polymer specimens that exhibit near‐intrinsic properties using channel‐die pressing are demonstrated. A predominant edge‐on orientation is obtained for poly(3‐hexylthiophene‐2,5‐diyl) (P3HT) throughout 2 mm‐thick/wide samples. This persistent mesocrystalline arrangement at macroscopic scales allows reliable evaluation of the electronic charge‐transport anisotropy along all three crystallographic axes, with high mobilities found along the π‐stacking. Indeed, charge‐carrier mobilities of up to 2.3 cm2V−1s−1are measured along the π‐stack, which are some of the highest mobilities reported for polymers at low charge‐carrier densities (drop‐cast films display mobilities of maximum ≈10−3cm2V−1s−1). The structural coherence also leads to an unusually well‐defined photoluminescence line‐shape characteristic of an H‐aggregate (measured from the surface perpendicular to the materials flow), rather than the typical HJ‐aggregate feature usually found for P3HT. The approach is widely applicable: to electrical conductors and materials used in n‐type devices, such as poly{[N,N′‐bis(2‐octyldodecyl)‐naphthalene‐1,4,5,8‐bis(dicarboximide)‐2,6‐diyl]‐alt‐5,5′‐(2,2′‐bithiophene)} (N2200) where the mesocrystalline structure leads to high electron transport along the polymer backbones (≈1.3 cm2V−1s−1). This versatility and the broad applicability of channel‐die pressing signifies its promise as a straightforward, readily scalable method to fabricate bulk semiconducting polymer structures at macroscopic scales with properties typically accessible only by the tedious growth of single crystals.more » « less
An official website of the United States government
