skip to main content

Search for: All records

Creators/Authors contains: "Pearton, S. J."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The effect of doping in the drift layer and the thickness and extent of extension beyond the cathode contact of a NiO bilayer in vertical NiO/β-Ga2O3 rectifiers is reported. Decreasing the drift layer doping from 8 × 1015 to 6.7 × 1015 cm−3 produced an increase in reverse breakdown voltage (VB) from 7.7 to 8.9 kV, the highest reported to date for small diameter devices (100 μm). Increasing the bottom NiO layer from 10 to 20 nm did not affect the forward current–voltage characteristics but did reduce reverse leakage current for wider guard rings and reduced the reverse recovery switching time. The NiO extension beyond the cathode metal to form guard rings had only a slight effect (∼5%) in reverse breakdown voltage. The use of NiO to form a pn heterojunction made a huge improvement in VB compared to conventional Schottky rectifiers, where the breakdown voltage was ∼1 kV. The on-state resistance (RON) was increased from 7.1 m Ω cm2 in Schottky rectifiers fabricated on the same wafer to 7.9 m Ω cm2 in heterojunctions. The maximum power figure of merit (VB)2/RON was 10.2 GW cm−2 for the 100 μm NiO/Ga2O3 devices. We also fabricated large area (1 mm2) devices on the same wafer, achieving VB of 4 kV and 4.1 A forward current. The figure-of-merit was 9 GW  cm−2 for thesemore »devices. These parameters are the highest reported for large area Ga2O3 rectifiers. Both the small area and large area devices have performance exceeding the unipolar power device performance of both SiC and GaN.« less
    Free, publicly-accessible full text available July 1, 2024
  2. Vertical geometry NiO/β n-Ga2O/n+ Ga2O3 heterojunction rectifiers with contact sizes from 50 to 200 μm diameter showed breakdown voltages (VB) up to 7.5 kV for drift region carrier concentration of 8 × 1015 cm−3. This exceeds the unipolar 1D limit for SiC and was achieved without substrate thinning or annealing of the epi layer structure. The power figure-of-merit, VB2/RON, was 6.2 GW cm−2, where RON is the on-state resistance (9.3–14.7 mΩ cm2). The average electric field strength was 7.56 MV/cm, approaching the maximum for β-Ga2O3. The on–off ratio switching from 5 to 0 V was 2 × 1013, while it was 3 × 1010–2 × 1011 switching to 100 V. The turn-on voltage was in the range 1.9–2.1 V for the different contact diameters, while the reverse current density was in the range 2 × 10−8–2 × 10−9 A cm−2 at −100 V. The reverse recovery time was 21 ns, while the forward current density was >100 A/cm2 at 5 V.
    Free, publicly-accessible full text available May 1, 2024
  3. The energy and beam current dependence of Ga+focused ion beam milling damage on the sidewall of vertical rectifiers fabricated on n-type Ga2O3was investigated with 5–30 kV ions and beam currents from 1.3–20 nA. The sidewall damage was introduced by etching a mesa along one edge of existing Ga2O3rectifiers. We employed on-state resistance, forward and reverse leakage current, Schottky barrier height, and diode ideality factor from the vertical rectifiers as potential measures of the extent of the ion-induced sidewall damage. Rectifiers of different diameters were exposed to the ion beams and the “zero-area” parameters extracted by extrapolating to zero area and normalizing for milling depth. Forward currents degraded with exposure to any of our beam conductions, while reverse current was unaffected. On-state resistance was found to be most sensitive of the device parameters to Ga+beam energy and current. Beam current was the most important parameter in creating sidewall damage. Use of subsequent lower beam energies and currents after an initial 30 kV mill sequence was able to reduce residual damage effects but not to the point of initial lower beam current exposures.

  4. In this study, the response to a heavy-ion strike and the resulting single effect burnout on beta-Ga 2 O 3 Schottky diodes with biased field rings is investigated via TCAD. The model used to simulate the device under high-reverse bias is validated using experimental current-voltage (I-V) curves. A field ring configuration for the device demonstrates an improved charge removal after simulated heavy-ion strikes. If the time scale for charge removal is faster than single event burnout, this can be an effective mechanism for reducing the effect of single ion strikes. This study explores various configurations of the termination structure and shows the impact of different design parameters in terms of a transient response after the ion strike.
    Free, publicly-accessible full text available March 1, 2024
  5. Free, publicly-accessible full text available May 1, 2024
  6. Changes induced by irradiation with 1.1 MeV protons in the transport properties and deep trap spectra of thick (>80 μm) undoped κ-Ga2O3 layers grown on sapphire are reported. Prior to irradiation, the films had a donor concentration of ∼1015 cm−3, with the two dominant donors having ionization energies of 0.25 and 0.15 eV, respectively. The main electron traps were located at Ec−0.7 eV. Deep acceptor spectra measured by capacitance-voltage profiling under illumination showed optical ionization thresholds near 2, 2.8, and 3.4 eV. The diffusion length of nonequilibrium charge carriers for ɛ-Ga2O3 was 70 ± 5 nm prior to irradiation. After irradiation with 1.1 MeV protons to a fluence of 1014 cm−2, there was total depletion of mobile charge carriers in the top 4.5 μm of the film, close to the estimated proton range. The carrier removal rate was 10–20 cm−1, a factor of 5–10 lower than in β-Ga2O3, while the concentration of deep acceptors in the lower half of the bandgap and the diffusion length showed no significant change.
    Free, publicly-accessible full text available May 1, 2024
  7. NiO/β-(Al x Ga 1− x ) 2 O 3 /Ga 2 O 3 heterojunction lateral geometry rectifiers with diameter 50–100  μm exhibited maximum reverse breakdown voltages >7 kV, showing the advantage of increasing the bandgap using the β-(Al x Ga 1− x ) 2 O 3 alloy. This Si-doped alloy layer was grown by metal organic chemical vapor deposition with an Al composition of ∼21%. On-state resistances were in the range of 50–2180 Ω cm 2 , leading to power figures-of-merit up to 0.72 MW cm −2 . The forward turn-on voltage was in the range of 2.3–2.5 V, with maximum on/off ratios >700 when switching from 5 V forward to reverse biases up to −100 V. Transmission line measurements showed the specific contact resistance was 0.12 Ω cm 2 . The breakdown voltage is among the highest reported for any lateral geometry Ga 2 O 3 -based rectifier.
    Free, publicly-accessible full text available May 1, 2024
  8. There is increasing interest in α-polytype Ga 2 O 3 for power device applications, but there are few published reports on dielectrics for this material. Finding a dielectric with large band offsets for both valence and conduction bands is especially challenging given its large bandgap of 5.1 eV. One option is HfSiO 4 deposited by atomic layer deposition (ALD), which provides conformal, low damage deposition and has a bandgap of 7 eV. The valence band offset of the HfSiO 4 /Ga 2 O 3 heterointerface was measured using x-ray photoelectron spectroscopy. The single-crystal α-Ga 2 O 3 was grown by halide vapor phase epitaxy on sapphire substrates. The valence band offset was 0.82 ± 0.20 eV (staggered gap, type-II alignment) for ALD HfSiO 4 on α-Ga 0.2 O 3 . The corresponding conduction band offset was −2.72 ± 0.45 eV, providing no barrier to electrons moving into Ga 2 O 3 .
    Free, publicly-accessible full text available March 1, 2024
  9. Deep centers and their influence on photocurrent spectra and transients were studied for interdigitated photoresistors on α -Ga 2 O 3 undoped semi-insulating films grown by Halide Vapor Phase Epitaxy (HVPE) on sapphire. Characterization involving current-voltage measurements in the dark and with monochromatic illumination with photons with energies from 1.35 eV to 4.9 eV, Thermally Stimulated Current (TSC), Photoinduced Current Transients Spectroscopy (PICTS) showed the Fermi level in the dark was pinned at E c −0.8 eV, with other prominent centers being deep acceptors with optical thresholds near 2.3 eV and 4.9 eV and deep traps with levels at E c −0.5 eV, E c −0.6 eV. Measurements of photocurrent transients produced by illumination with photon energies 2.3 eV and 4.9 eV and Electron Beam Induced Current (EBIC) imaging point to the high sensitivity and external quantum efficiency values being due to hole trapping enhancing the lifetime of electrons and inherently linked with the long photocurrent transients. The photocurrent transients are stretched exponents, indicating the strong contribution of the presence of centers with barriers for electron capture and/or of potential fluctuations.
    Free, publicly-accessible full text available April 1, 2024
  10. The (Sm x Ga 1−x ) 2 O 3 alloy system is a potential new dielectric for compound semiconductors such as GaAs. Using molecular beam epitaxy under metal-modulated growth conditions, we grew the binary oxide, Sm 2 O 3 , at two substrate temperatures (100 and 500 °C) and optimized the structural, morphological, and electrical properties of the films. Decreasing the Sm cell temperature suppressed the formation of the monoclinic phase and promoted the growth of the cubic phase. Next, the ternary oxide, (Sm x Ga 1−x ) 2 O 3 , was deposited to investigate the effects of Ga incorporation. Optimization experiments were used to determine the effects of substrate temperature and samarium cell temperature (i.e., growth rate) on film stoichiometry, phase distribution, and microstructure in these films. Films grown at 500 °C showed significant surface roughness and the presence of multiple crystalline phases. Since all of the Sm-based oxides (i.e., samarium oxide with and without gallium) were found to have unbonded Sm metal, annealing experiments were carried out in oxygen and forming gas to determine the effects of annealing on film stoichiometry. The motivation behind annealing in forming gas was to see whether this commonly used technique for reducing interfacemore »densities could improve the film quality. GaAs metal-oxide-semiconductor diodes with (Sm x Ga 1−x ) 2 O 3 showed breakdown fields at 1 mA/cm 2 of 4.35 MV/cm, which decreased with increasing Sm unbonded metal content in the films.« less
    Free, publicly-accessible full text available December 1, 2023