skip to main content

Search for: All records

Creators/Authors contains: "Pedatella, Nicholas M."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    On 3 February 2022, at 18:13 UTC, SpaceX launched and a short time later deployed 49 Starlink satellites at an orbit altitude between 210 and 320 km. The satellites were meant to be further raised to 550 km. However, the deployment took place during the main phase of a moderate geomagnetic storm, and another moderate storm occurred on the next day. The resulting increase in atmospheric drag led to 38 out of the 49 satellites reentering the atmosphere in the following days. In this work, we use both observations and simulations to perform a detailed investigation of the thermospheric conditions during this storm. Observations at higher altitudes, by Swarm‐A (∼438 km, 09/21 Local Time [LT]) and the Gravity Recovery and Climate Experiment Follow‐On (∼505 km, 06/18 LT) missions show that during the main phase of the storms the neutral mass density increased by 110% and 120%, respectively. The storm‐time enhancement extended to middle and low latitudes and was stronger in the northern hemisphere. To further investigate the thermospheric variations, we used six empirical and first‐principle numerical models. We found the models captured the upper and lower thermosphere changes, however, their simulated density enhancements differ by up to 70%. Further, the models showed that at the low orbital altitudes of the Starlink satellites (i.e., 200–300 km) the global averaged storm‐time density enhancement reached up to ∼35%–60%. Although such storm effects are far from the largest, they seem to be responsible for the reentry of the 38 satellites.

    more » « less
    Free, publicly-accessible full text available September 1, 2024
  2. The mesospheric polar vortex (MPV) plays a critical role in coupling the atmosphere-ionosphere system, so its accurate simulation is imperative for robust predictions of the thermosphere and ionosphere. While the stratospheric polar vortex is widely understood and characterized, the mesospheric polar vortex is much less well-known and observed, a short-coming that must be addressed to improve predictability of the ionosphere. The winter MPV facilitates top-down coupling via the communication of high energy particle precipitation effects from the thermosphere down to the stratosphere, though the details of this mechanism are poorly understood. Coupling from the bottom-up involves gravity waves (GWs), planetary waves (PWs), and tidal interactions that are distinctly different and important during weak vs. strong vortex states, and yet remain poorly understood as well. Moreover, generation and modulation of GWs by the large wind shears at the vortex edge contribute to the generation of traveling atmospheric disturbances and traveling ionospheric disturbances. Unfortunately, representation of the MPV is generally not accurate in state-of-the-art general circulation models, even when compared to the limited observational data available. Models substantially underestimate eastward momentum at the top of the MPV, which limits the ability to predict upward effects in the thermosphere. The zonal wind bias responsible for this missing momentum in models has been attributed to deficiencies in the treatment of GWs and to an inaccurate representation of the high-latitude dynamics. In the coming decade, simulations of the MPV must be improved. 
    more » « less
  3. Abstract

    We report on a new method to derive the on‐orbit electron density using the Tri Global Navigation Satellite System (GNSS) Radio‐occultation System (Tri‐GNSS Radio occultation System (TGRS)) differential total electron content data and compare it to the Constellation Observing System for Meteorology Ionosphere and Climate‐2 Ion Velocity Meter (IVM) ion density data. We found that the IVM ion density is about 8%–15% lower than the TGRS derived density at the insertion orbit (∼710 km) and 5% higher at the mission operation orbit (∼540 km) for reasons that are currently unknown. Using a linear coefficient, we scaled the IVM data to remove the offset between TGRS‐derived electron density and the IVM ion density for the two orbital heights. We believe the scaled IVM densities eliminate any inter‐spacecraft discrepancy, making the IVM data suitable for use in high precision multi‐satellite scientific investigations of longitudinal and local time variations of non‐migrating tides, planetary waves and space weather operational applications.

    more » « less
  4. Abstract. The Andenes specular meteor radar shows meteor trail diffusion rates increasing on average byabout 10 % at times and locations where a lidar observes noctilucentclouds (NLCs). This high-latitude effect has been attributed to the presenceof charged NLC after exploring possible contributions from thermal tides. Tomake this claim, the current study evaluates data from three stations athigh, middle, and low latitudes for the years 2012 to 2016 to show that NLCinfluence on the meteor trail diffusion is independent of thermal tides. Theobservations also show that the meteor trail diffusion enhancement during NLCcover exists only at high latitudes and near the peaks of NLC layers. Thispaper discusses a number of possible explanations for changes in the regionswith NLCs and leans towards the hypothesis that the relative abundance ofbackground electron density plays the leading role. A more accurate model ofthe meteor trail diffusion around NLC particles would help researchersdetermine mesospheric temperature and neutral density profiles from meteorradars at high latitudes. 
    more » « less
  5. Abstract

    The energetic particle precipitation (EPP) indirect effect (IE) refers to the downward transport of reactive odd nitrogen (NOx = NO + NO2) produced by EPP (EPP‐NOx) from the polar winter mesosphere and lower thermosphere to the stratosphere where it can destroy ozone. Previous studies of the EPP IE examined NOxdescent averaged over the polar region, but the work presented here considers longitudinal variations. We report that the January 2009 split Arctic vortex in the stratosphere left an imprint on the distribution of NO near the mesopause, and that the magnitude of EPP‐NOxdescent in the upper mesosphere depends strongly on the planetary wave (PW) phase. We focus on an 11‐day case study in late January immediately following the 2009 sudden stratospheric warming during which regional‐scale Lagrangian coherent structures (LCSs) formed atop the strengthening mesospheric vortex. The LCSs emerged over the north Atlantic in the vicinity of the trough of a 10‐day westward traveling planetary wave. Over the next week, the LCSs acted to confine NO‐rich air to polar latitudes, effectively prolonging its lifetime as it descended into the top of the polar vortex. Both a whole atmosphere data assimilation model and satellite observations show that the PW trough remained coincident in space and time with the NO‐rich air as both migrated westward over the Canadian Arctic. Estimates of descent rates indicate five times stronger descent inside the PW trough compared to other longitudes. This case serves to set the stage for future climatological analysis of NO transport via LCSs.

    more » « less
  6. Abstract

    Prediction systems to enable Earth system predictability research on the subseasonal time scale have been developed with the Community Earth System Model, version 2 (CESM2) using two configurations that differ in their atmospheric components. One system uses the Community Atmosphere Model, version 6 (CAM6) with its top near 40 km, referred to as CESM2(CAM6). The other employs the Whole Atmosphere Community Climate Model, version 6 (WACCM6) whose top extends to ∼140 km, and it includes fully interactive tropospheric and stratospheric chemistry [CESM2(WACCM6)]. Both systems are utilized to carry out subseasonal reforecasts for the 1999–2020 period following the Subseasonal Experiment’s (SubX) protocol. Subseasonal prediction skill from both systems is compared to those of the National Oceanic and Atmospheric Administration CFSv2 and European Centre for Medium-Range Weather Forecasts (ECMWF) operational models. CESM2(CAM6) and CESM2(WACCM6) show very similar subseasonal prediction skill of 2-m temperature, precipitation, the Madden–Julian oscillation, and North Atlantic Oscillation to its previous version and to the NOAA CFSv2 model. Overall, skill of CESM2(CAM6) and CESM2(WACCM6) is a little lower than that of the ECMWF system. In addition to typical output provided by subseasonal prediction systems, CESM2 reforecasts provide comprehensive datasets for predictability research of multiple Earth system components, including three-dimensional output for many variables, and output specific to the mesosphere and lower-thermosphere (MLT) region from CESM2(WACCM6). It is shown that sudden stratosphere warming events, and the associated variability in the MLT, can be predicted ∼10 days in advance. Weekly real-time forecasts and reforecasts with CESM2(CAM6) and CESM2(WACCM6) are freely available.

    Significance Statement

    We describe here the design and prediction skill of two subseasonal prediction systems based on two configurations of the Community Earth System Model, version 2 (CESM2): CESM2 with the Community Atmosphere Model, version 6 [CESM2(CAM6)] and CESM 2 with Whole Atmosphere Community Climate Model, version 6 [CESM2(WACCM6)] as its atmospheric component. These two systems provide a foundation for community-model based subseasonal prediction research. The CESM2(WACCM6) system provides a novel capability to explore the predictability of the stratosphere, mesosphere, and lower thermosphere. Both CESM2(CAM6) and CESM2(WACCM6) demonstrate subseasonal surface prediction skill comparable to that of the NOAA CFSv2 model, and a little lower than that of the ECMWF forecasting system. CESM2 reforecasts provide a comprehensive dataset for predictability research of multiple aspects of the Earth system, including the whole atmosphere up to 140 km, land, and sea ice. Weekly real-time forecasts, reforecasts, and models are publicly available.

    more » « less
  7. Abstract

    Sudden stratospheric warmings (SSWs) are impressive fluid dynamical events in which large and rapid temperature increases in the winter polar stratosphere (10–50 km) are associated with a complete reversal of the climatological wintertime westerly winds. SSWs are caused by the breaking of planetary‐scale waves that propagate upwards from the troposphere. During an SSW, the polar vortex breaks down, accompanied by rapid descent and warming of air in polar latitudes, mirrored by ascent and cooling above the warming. The rapid warming and descent of the polar air column affect tropospheric weather, shifting jet streams, storm tracks, and the Northern Annular Mode, making cold air outbreaks over North America and Eurasia more likely. SSWs affect the atmosphere above the stratosphere, producing widespread effects on atmospheric chemistry, temperatures, winds, neutral (nonionized) particles and electron densities, and electric fields. These effects span both hemispheres. Given their crucial role in the whole atmosphere, SSWs are also seen as a key process to analyze in climate change studies and subseasonal to seasonal prediction. This work reviews the current knowledge on the most important aspects of SSWs, from the historical background to dynamical processes, modeling, chemistry, and impact on other atmospheric layers.

    more » « less