- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Beckmann, R. S. (1)
-
Canning, R. E. (1)
-
Colombi, S (1)
-
Combes, F. (1)
-
Devriendt, J (1)
-
Donahue, M. (1)
-
Dubois, Y (1)
-
Dubois, Y. (1)
-
Edge, A. (1)
-
Fabian, A. C. (1)
-
Ferland, G. (1)
-
Godard, B. (1)
-
Guillard, P. (1)
-
Hamer, S. (1)
-
Laigle, C (1)
-
Lavaux, G (1)
-
Lehnert, M. D. (1)
-
McNamara, B. (1)
-
Olivares, V. (1)
-
Peirani, S (1)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
ABSTRACT We present LyMAS2, an improved version of the ‘Lyman-α Mass Association Scheme’ aiming at predicting the large-scale 3D clustering statistics of the Lyman-α forest (Ly α) from moderate-resolution simulations of the dark matter (DM) distribution, with prior calibrations from high-resolution hydrodynamical simulations of smaller volumes. In this study, calibrations are derived from the Horizon-AGN suite simulations, (100 Mpc h)−3 comoving volume, using Wiener filtering, combining information from DM density and velocity fields (i.e. velocity dispersion, vorticity, line-of-sight 1D-divergence and 3D-divergence). All new predictions have been done at z = 2.5 in redshift space, while considering the spectral resolution of the SDSS-III BOSS Survey and different DM smoothing (0.3, 0.5, and 1.0 Mpc h−1 comoving). We have tried different combinations of DM fields and found that LyMAS2, applied to the Horizon-noAGN DM fields, significantly improves the predictions of the Ly α 3D clustering statistics, especially when the DM overdensity is associated with the velocity dispersion or the vorticity fields. Compared to the hydrodynamical simulation trends, the two-point correlation functions of pseudo-spectra generated with LyMAS2 can be recovered with relative differences of ∼5 per cent even for high angles, the flux 1D power spectrum (along the light of sight) with ∼2 per cent and the flux 1D probability distribution function exactly. Finally, we have produced several large mock BOSS spectra (1.0 and 1.5 Gpc h−1) expected to lead to much more reliable and accurate theoretical predictions.more » « less
-
Olivares, V.; Salome, P.; Combes, F.; Hamer, S.; Guillard, P.; Lehnert, M. D.; Polles, F. L.; Beckmann, R. S.; Dubois, Y.; Donahue, M.; et al (, Astronomy & Astrophysics)Multi-phase filamentary structures around brightest cluster galaxies (BCG) are likely a key step of AGN-feedback. We observed molecular gas in three cool cluster cores, namely Centaurus, Abell S1101, and RXJ1539.5, and gathered ALMA (Atacama Large Millimeter/submillimeter Array) and MUSE (Multi Unit Spectroscopic Explorer) data for 12 other clusters. Those observations show clumpy, massive, and long (3−25 kpc) molecular filaments, preferentially located around the radio bubbles inflated by the AGN. Two objects show nuclear molecular disks. The optical nebula is certainly tracing the warm envelopes of cold molecular filaments. Surprisingly, the radial profile of the H α /CO flux ratio is roughly constant for most of the objects, suggesting that (i) between 1.2 and 6 times more cold gas could be present and (ii) local processes must be responsible for the excitation. Projected velocities are between 100 and 400 km s −1 , with disturbed kinematics and sometimes coherent gradients. This is likely due to the mixing in projection of several thin (and as yet) unresolved filaments. The velocity fields may be stirred by turbulence induced by bubbles, jets, or merger-induced sloshing. Velocity and dispersions are low, below the escape velocity. Cold clouds should eventually fall back and fuel the AGN. We compare the radial extent of the filaments, r fil , with the region where the X-ray gas can become thermally unstable. The filaments are always inside the low-entropy and short-cooling-time region, where t cool / t ff < 20 (9 of 13 sources). The range of t cool / t ff of 8−23 at r fil , is likely due to (i) a more complex gravitational potential affecting the free-fall time t ff (sloshing, mergers, etc.) and (ii) the presence of inhomogeneities or uplifted gas in the ICM, affecting the cooling time t cool . For some of the sources, r fil lies where the ratio of the cooling time to the eddy-turnover time, t cool / t eddy , is approximately unity.more » « less
An official website of the United States government
