We have investigated the collective electronic and magnetic orderings of a series of La1−
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract x Srx MnO3thin films grown epitaxially strained to (001) oriented strontium titanate substrates as a function of doping,x , for 0 ≤x ≤ 0.4. We find that the ground states of these crystalline thin films are, in general, consistent with that observed in bulk crystals and thin film samples synthesized under a multitude of techniques. Our systematic study, however, reveal subtle features in the temperature dependent electronic transport and magnetization measurements, which presumably arise due to Jahn-Teller type distortions in the lattice for particular doping levels. For the parent compound LaMnO3(x = 0), we report evidence of a strain-induced ferromagnetic ordering in contrast to the antiferromagnetic ground state found in bulk crystals.