Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract The Swift–Hohenberg equation (SHE) is a partial differential equation that explains how patterns emerge from a spatially homogeneous state. It has been widely used in the theory of pattern formation. Following a recent study by Bramburger and Holzer (SIAM J Math Anal 55(3):2150–2185, 2023), we consider discrete SHE on deterministic and random graphs. The two families of the discrete models share the same continuum limit in the form of a nonlocal SHE on a circle. The analysis of the continuous system, parallel to the analysis of the classical SHE, shows bifurcations of spatially periodic solutions at critical values of the control parameters. However, the proximity of the discrete models to the continuum limit does not guarantee that the same bifurcations take place in the discrete setting in general, because some of the symmetries of the continuous model do not survive discretization. We use the center manifold reduction and normal forms to obtain precise information about the number and stability of solutions bifurcating from the homogeneous state in the discrete models on deterministic and sparse random graphs. Moreover, we present detailed numerical results for the discrete SHE on the nearest-neighbor and small-world graphs.more » « lessFree, publicly-accessible full text available October 1, 2025
-
Abstract Using the Darboux transformation for the Korteweg–de Vries equation, we construct and analyze exact solutions describing the interaction of a solitary wave and a traveling cnoidal wave. Due to their unsteady, wavepacket-like character, these wave patterns are referred to as breathers. Both elevation (bright) and depression (dark) breather solutions are obtained. The nonlinear dispersion relations demonstrate that the bright (dark) breathers propagate faster (slower) than the background cnoidal wave. Two-soliton solutions are obtained in the limit of degeneration of the cnoidal wave. In the small amplitude regime, the dark breathers are accurately approximated by dark soliton solutions of the nonlinear Schrödinger equation. These results provide insight into recent experiments on soliton-dispersive shock wave interactions and soliton gases.more » « less