skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Peng, Kaidong"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The ever-growing data traffic requires greater transmission bandwidth and better energy efficiency in chip scale interconnects. The emerging transistor-laser-based electronic-photonic processing platform stands out for its high electrical-to-optical efficiency. Because transistor lasers operate best at 980 nm, efficient optical interconnects at this wavelength need to be developed for such energy-efficient computing platforms. Phase change materials (PCMs) are good candidates for achieving non-volatile, reconfigurable, zero-static power optical switching. Having bi-stable states under room temperature, a PCM has its permittivity significantly different between its crystalline and amorphous phases. The authors propose to develop a reconfigurable 1 x 2 optical switch by utilizing low loss GeTe PCM to pave the way for the transistor-laser platform at 980 nm. The non-volatility of the proposed device will open up opportunities for other interesting applications such as non-volatile optical memory and the optical equivalence of the field programmable gate array (FPGA). 
    more » « less