skip to main content

Search for: All records

Creators/Authors contains: "Peng, S."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
    Electromigration (EM) becomes a major concern for VLSI circuits as the technology advances in the nanometer regime. With Korhonen equations, EM assessment for VLSI circuits remains challenged due to the increasing integrated density. VLSI multisegment interconnect trees can be naturally viewed as graphs. Based on this observation, we propose a new graph convolution network (GCN) model, which is called {\it EMGraph} considering both node and edge embedding features, to estimate the transient EM stress of interconnect trees. Compared with recently proposed generative adversarial network (GAN) based stress image-generation method, EMGraph model can learn more transferable knowledge to predict stress distributions on new graphs without retraining via inductive learning. Trained on the large dataset, the model shows less than 1.5% averaged error compared to the ground truth results and is orders of magnitude faster than both COMSOL and state-of-the-art method. It also achieves smaller model size, 4X accuracy and 14X speedup over the GAN-based method. 
    more » « less
  2. In this paper, we propose a new dynamic reliability technique using an accuracy-reconfigurable stochastic computing (ARSC) framework for deep learning computing. Unlike the conventional stochastic computing that conducts design time accuracy power/energy trade-off, the new ARSC design can adjust the bit-width of the data in run time. Hence, the ARSC can mitigate the long-term aging effects by slowing the system clock frequency, while maintaining the inference throughput by reducing the data bit-width at a small cost of accuracy. We show how to implement the recently proposed counter-based SC multiplication and bit-width reduction on a layer-wise quantization scheme for CNN networks with dynamic fixed-point data. We validate an ARSC-based five-layer convolutional neural network designs for the MNIST dataset based on Vivado HLS with constraints from Xilinx Zynq-7000 family xc7z045 platform. Experimental results show that new ARSC DNN can sufficiently compensate the NBTI induced aging effects in 10 years with marginal classification accuracy loss while maintaining or even exceeding the pre-aging computing throughput. At the same time, the proposed ARSC computing framework also reduces the active power consumption due to the frequency scaling, which can further improve system reliability due to the reduced temperature. 
    more » « less
  3. In this paper, we propose an image generative learning framework for electrostatic analysis for VLSI dielectric aging estimation. This work leverages the observation that the synthesized multi layer interconnect VLSI layout can be viewed as layered 2D images and the analysis can be viewed as the image generation. The efficient image-to-image translation property of generative learning is therefore used to obtain the potential distribution on the respective interconnect layers. Compared with the recent CNN-based electrostatic analysis method, the new method can lead to 1.54x speedup for inference due to reduced neural network structures and parameters. We demonstrate the proposed method for time-dependent dielectric breakdown analysis and show the significant speedup compared to the traditional numerical method. 
    more » « less
  4. null (Ed.)