skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Peng, Yi"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Coalescence of nuclei in phase transitions significantly influences the transition rate and the properties of product materials, but these processes occur rapidly and are difficult to observe at the microscopic scale. Here, we directly image the coalescence of nuclei with single particle resolution during the crystal-crystal transition from a multilayer square to triangular lattices. The coalescence process exhibits three similar stages across a variety of scenarios: coupled growth of two nuclei, their attachment, and relaxation of the coalesced nucleus. The kinetics vary with nucleus size, interface, and lattice orientation; the kinetics include acceleration of nucleus growth, small nucleus liquefaction, and generation/annihilation of defects. Related mechanisms, such as strain induced by nucleus growth and the lower energy of liquid-crystal versus crystal-crystal interfaces, appear to be common to both atomic and colloidal crystals. 
    more » « less
  2. null (Ed.)
    We experimentally study the emergence of collective bacterial swimming, a phenomenon often referred to as bacterial turbulence. A phase diagram of the flow of 3D Escherichia coli suspensions spanned by bacterial concentration, the swimming speed of bacteria, and the number fraction of active swimmers is systematically mapped, which shows quantitative agreement with kinetic theories and demonstrates the dominant role of hydrodynamic interactions in bacterial collective swimming. We trigger bacterial turbulence by suddenly increasing the swimming speed of light-powered bacteria and image the transition to the turbulence in real time. Our experiments identify two unusual kinetic pathways, i.e., the one-step transition with long incubation periods near the phase boundary and the two-step transition driven by long-wavelength instabilities deep inside the turbulent phase. Our study provides not only a quantitative verification of existing theories but also insights into interparticle interactions and transition kinetics of bacterial turbulence. 
    more » « less
  3. null (Ed.)
    Grain growth under shear annealing is crucial for controlling the properties of polycrystalline materials. However, their microscopic kinetics are not well understood because individual atomic trajectories are difficult to track. Here, we study grain growth with single-particle kinetics in colloidal polycrystals using video microscopy. Rich grain-growth phenomena are revealed in three shear regimes, including the normal grain growth (NGG) in weak shear melting–recrystallization process in strong shear. For intermediate shear, early stage NGG is arrested by built-up stress and eventually gives way to dynamic abnormal grain growth (DAGG). We find that DAGG occurs via a melting–recrystallization process, which naturally explains the puzzling stress drop at the onset of DAGG in metals. Moreover, we visualize that grain boundary (GB) migration is coupled with shear via disconnection gliding. The disconnection-gliding dynamics and the collective motions of ambient particles are resolved. We also observed that grain rotation can violate the conventional relation R × θ = c o n s t a n t (R is the grain radius, and θ is the misorientation angle between two grains) by emission and annihilation of dislocations across the grain, resulting in a step-by-step rotation. Besides grain growth, we discover a result in shear-induced melting: The melting volume fraction varies sinusoidally on the angle mismatch between the triangular lattice orientation of the grain and the shear direction. These discoveries hold potential to inform microstructure engineering of polycrystalline materials. 
    more » « less
  4. null (Ed.)
  5. null (Ed.)
  6. null (Ed.)