Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Nutrient foraging by fungi weathers rocks by mechanical and biochemical processes. Distinguishing fungal-driven transformation from abiotic mechanisms in soil remains a challenge due to complexities within natural field environments. We examined the role of fungal hyphae in the incipient weathering of granulated basalt from a three-year field experiment in a mixed hardwood-pine forest (S. Carolina) to identify alteration at the nanometer to micron scales based on microscopy-tomography analyses. Investigations of fungal-grain contacts revealed (i) a hypha-biofilm-basaltic glass interface coinciding with titanomagnetite inclusions exposed on the grain surface and embedded in the glass matrix and (ii) native dendritic and subhedral titanomagnetite inclusions in the upper 1–2 µm of the grain surface that spanned the length of the fungal-grain interface. We provide evidence of submicron basaltic glass dissolution occurring at a fungal-grain contact in a soil field setting. An example of how fungal-mediated weathering can be distinguished from abiotic mechanisms in the field was demonstrated by observing hyphal selective occupation and hydrolysis of glass-titanomagnetite surfaces. We hypothesize that the fungi were drawn to basaltic glass-titanomagnetite boundaries given that titanomagnetite exposed on or very near grain surfaces represents a source of iron to microbes. Furthermore, glass is energetically favorable to weathering in the presence of titanomagnetite. Our observations demonstrate that fungi interact with and transform basaltic substrates over a three-year time scale in field environments, which is central to understanding the rates and pathways of biogeochemical reactions related to nuclear waste disposal, geologic carbon storage, nutrient cycling, cultural artifact preservation, and soil-formation processes.more » « less
-
Abstract Pyrite framboids (spherical masses of nanoscale pyrite) are among the earliest textures of pyrite to form in sediments. It has been proposed that their trace-element (TE) contents can be used to track the TE composition of the water column in which they formed. However, it is not clear how these TEs are associated with the framboidal pyrite grains. For instance, it is important to know whether they are incorporated uniformly or are enriched in different regions of the framboid. We used high-resolution scanning transmission electron microscopy to identify chemical zoning within pyrite framboids. We found that initial, nanoscale pyrite euhedral crystals, which make up the volumetric majority of the framboids, are covered/infilled by later pyrite that templates on the earlier pyrite. Further, this later pyrite is enriched in TEs, suggesting that many TEs are incorporated in pyrite relatively late (during early diagenesis; not in the water column). This observation suggests that although chemical analyses of pyrite framboids may provide ocean-water chemistry trends through time, the details are complex. Specifically, the TEs found in pyrite may be linked to adsorption onto organic matter, detrital material, and authigenic minerals such as Fe- and Mn-oxide phases followed by desorption in the sediments or release via dissolution and incorporation into pyrite as overgrowths on the initial nanoscale euhedral crystals that make up framboids. While the use of pyrite chemistry to understand past ocean conditions remains promising, and even diagenetic additions may not preclude the utility of pyrite for reconstructing ancient ocean conditions, care must be taken in interpretations because the end concentration may be influenced by diagenesis.more » « less
An official website of the United States government
