skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, July 11 until 2:00 AM ET on Saturday, July 12 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Pereira, M. E."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Redshift measurements, primarily obtained from host galaxies, are essential for inferring cosmological parameters from type Ia supernovae (SNe Ia). Matching SNe to host galaxies using images is nontrivial, resulting in a subset of SNe with mismatched hosts and thus incorrect redshifts. We evaluate the host galaxy mismatch rate and resulting biases on cosmological parameters from simulations modeled after the Dark Energy Survey 5 Yr (DES-SN5YR) photometric sample. For both DES-SN5YR data and simulations, we employ the directional light radius method for host galaxy matching. In our SN Ia simulations, we find that 1.7% of SNe are matched to the wrong host galaxy, with redshift differences between the true and matched hosts of up to 0.6. Using our analysis pipeline, we determine the shift in the dark energy equation of state parameter (Δw) due to including SNe with incorrect host galaxy matches. For SN Ia–only simulations, we find Δw= 0.0013 ± 0.0026 with constraints from the cosmic microwave background. Including core-collapse SNe and peculiar SNe Ia in the simulation, we find that Δwranges from 0.0009 to 0.0032, depending on the photometric classifier used. This bias is an order of magnitude smaller than the expected total uncertainty onwfrom the DES-SN5YR sample of ∼0.03. We conclude that the bias onwfrom host galaxy mismatch is much smaller than the uncertainties expected from the DES-SN5YR sample, but we encourage further studies to reduce this bias through better host-matching algorithms or selection cuts. 
    more » « less
  2. ABSTRACT Cross-correlation between weak lensing of the Cosmic Microwave Background (CMB) and weak lensing of galaxies offers a way to place robust constraints on cosmological and astrophysical parameters with reduced sensitivity to certain systematic effects affecting individual surveys. We measure the angular cross-power spectrum between the Atacama Cosmology Telescope (ACT) DR4 CMB lensing and the galaxy weak lensing measured by the Dark Energy Survey (DES) Y3 data. Our baseline analysis uses the CMB convergence map derived from ACT-DR4 and Planck data, where most of the contamination due to the thermal Sunyaev Zel’dovich effect is removed, thus avoiding important systematics in the cross-correlation. In our modelling, we consider the nuisance parameters of the photometric uncertainty, multiplicative shear bias and intrinsic alignment of galaxies. The resulting cross-power spectrum has a signal-to-noise ratio = 7.1 and passes a set of null tests. We use it to infer the amplitude of the fluctuations in the matter distribution (S8 ≡ σ8(Ωm/0.3)0.5 = 0.782 ± 0.059) with informative but well-motivated priors on the nuisance parameters. We also investigate the validity of these priors by significantly relaxing them and checking the consistency of the resulting posteriors, finding them consistent, albeit only with relatively weak constraints. This cross-correlation measurement will improve significantly with the new ACT-DR6 lensing map and form a key component of the joint 6×2pt analysis between DES and ACT. 
    more » « less
  3. ABSTRACT Widefield surveys probe clustered scalar fields – such as galaxy counts, lensing potential, etc. – which are sensitive to different cosmological and astrophysical processes. Constraining such processes depends on the statistics that summarize the field. We explore the cumulative distribution function (CDF) as a summary of the galaxy lensing convergence field. Using a suite of N-body light-cone simulations, we show the CDFs’ constraining power is modestly better than the second and third moments, as CDFs approximately capture information from all moments. We study the practical aspects of applying CDFs to data, using the Dark Energy Survey (DES Y3) data as an example, and compute the impact of different systematics on the CDFs. The contributions from the point spread function and reduced shear approximation are $$\lesssim 1~{{\ \rm per\ cent}}$$ of the total signal. Source clustering effects and baryon imprints contribute 1–10 per cent. Enforcing scale cuts to limit systematics-driven biases in parameter constraints degrade these constraints a noticeable amount, and this degradation is similar for the CDFs and the moments. We detect correlations between the observed convergence field and the shape noise field at 13σ. The non-Gaussian correlations in the noise field must be modelled accurately to use the CDFs, or other statistics sensitive to all moments, as a rigorous cosmology tool. 
    more » « less
  4. Abstract We report results from a systematic wide-area search for faint dwarf galaxies at heliocentric distances from 0.3 to 2 Mpc using the full 6 yr of data from the Dark Energy Survey (DES). Unlike previous searches over the DES data, this search specifically targeted a field population of faint galaxies located beyond the Milky Way virial radius. We derive our detection efficiency for faint, resolved dwarf galaxies in the Local Volume with a set of synthetic galaxies and expect our search to be complete toMV∼ (−7, −10) mag for galaxies atD= (0.3, 2.0) Mpc. We find no new field dwarfs in the DES footprint, but we report the discovery of one high-significance candidate dwarf galaxy at a distance of 2.2 0.12 + 0.05 Mpc , a potential satellite of the Local Volume galaxy NGC 55, separated by 47′ (physical separation as small as 30 kpc). We estimate this dwarf galaxy to have an absoluteV-band magnitude of 8.0 0.3 + 0.5 mag and an azimuthally averaged physical half-light radius of 2.2 0.4 + 0.5 kpc , making this one of the lowest surface brightness galaxies ever found with μ = 32.3 mag arcsec 2 . This is the largest, most diffuse galaxy known at this luminosity, suggesting possible tidal interactions with its host. 
    more » « less
  5. Abstract We combine photometry of Eris from a 6 month campaign on the Palomar 60 inch telescope in 2015, a 1 month Hubble Space Telescope WFC3 campaign in 2018, and Dark Energy Survey data spanning 2013–2018 to determine a light curve of definitive period 15.771 ± 0.008 days (1σformal uncertainties), with nearly sinusoidal shape and peak-to-peak flux variation of 3%. This is consistent at part-per-thousand precision with theP= 15.785 90 ± 0.00005 day sidereal period of Dysnomia’s orbit around Eris, strengthening the recent detection of synchronous rotation of Eris by Szakáts et al. with independent data. Photometry from Gaia are consistent with the same light curve. We detect a slope of 0.05 ± 0.01 mag per degree of Eris’s brightness with respect to illumination phase averaged acrossg,V, andrbands, intermediate between Pluto’s and Charon’s values. Variations of 0.3 mag are detected in Dysnomia’s brightness, plausibly consistent with a double-peaked light curve at the synchronous period. The synchronous rotation of Eris is consistent with simple tidal models initiated with a giant-impact origin of the binary, but is difficult to reconcile with gravitational capture of Dysnomia by Eris. The high albedo contrast between Eris and Dysnomia remains unexplained in the giant-impact scenario. 
    more » « less
  6. ABSTRACT We search for signatures of cosmological shocks in gas pressure profiles of galaxy clusters using the cluster catalogues from three surveys: the Dark Energy Survey (DES) Year 3, the South Pole Telescope (SPT) SZ survey, and the Atacama Cosmology Telescope (ACT) data releases 4, 5, and 6, and using thermal Sunyaev–Zeldovich (SZ) maps from SPT and ACT. The combined cluster sample contains around 105 clusters with mass and redshift ranges $$10^{13.7} \lt M_{\rm 200m}/\, {\rm M}_\odot \lt 10^{15.5}$$ and 0.1 < z < 2, and the total sky coverage of the maps is $$\approx 15\, 000 \deg ^2$$. We find a clear pressure deficit at R/R200m ≈ 1.1 in SZ profiles around both ACT and SPT clusters, estimated at 6σ significance, which is qualitatively consistent with a shock-induced thermal non-equilibrium between electrons and ions. The feature is not as clearly determined in profiles around DES clusters. We verify that measurements using SPT or ACT maps are consistent across all scales, including in the deficit feature. The SZ profiles of optically selected and SZ-selected clusters are also consistent for higher mass clusters. Those of less massive, optically selected clusters are suppressed on small scales by factors of 2–5 compared to predictions, and we discuss possible interpretations of this behaviour. An oriented stacking of clusters – where the orientation is inferred from the SZ image, the brightest cluster galaxy, or the surrounding large-scale structure measured using galaxy catalogues – shows the normalization of the one-halo and two-halo terms vary with orientation. Finally, the location of the pressure deficit feature is statistically consistent with existing estimates of the splashback radius. 
    more » « less