- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Perez, Rolando (2)
-
Aguilar, Salomon (1)
-
Anderson-Teixeira, Kristina J. (1)
-
Bourg, Norman A. (1)
-
Brockelman, Warren Y. (1)
-
Bunyavejchewin, Sarayudh (1)
-
Castaño, Nicolas (1)
-
Chang-Yang, Chia-Hao (1)
-
Chisholm, Ryan A. (1)
-
Chuyong, George B. (1)
-
Clay, Keith (1)
-
Comita, Liza (1)
-
Davies, Stuart J. (1)
-
Duque, Alvaro (1)
-
Ediriweera, Sisira (1)
-
Ewango, Corneille (1)
-
Gilbert, Gregory S. (1)
-
Hartig, Florian (1)
-
Holík, Jan (1)
-
Howe, Robert W. (1)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Synopsis The modern field of biology has its roots in the curiosity and skill of amateur researchers and has never been purely the domain of professionals. Today, professionals and amateurs contribute to biology research, working both together and independently. Well-targeted and holistic investment in amateur biology research could bring a range of benefits that, in addition to positive societal benefits, may help to address the considerable challenges facing our planet in the 21st century. We highlight how recent advances in amateur biology have been facilitated by innovations in digital infrastructure as well as the development of community biology laboratories, launched over the last decade, and we provide recommendations for how individuals can support the integration of amateurs into biology research. The benefits of investment in amateur biology research could be many-fold, however, without a clear consideration of equity, efforts to promote amateur biology could exacerbate structural inequalities around access to and benefits from STEM. The future of the field of biology relies on integrating a diversity of perspectives and approaches—amateur biology researchers have an important role to play.more » « less
-
Hülsmann, Lisa; Chisholm, Ryan A.; Comita, Liza; Visser, Marco D.; de Souza Leite, Melina; Aguilar, Salomon; Anderson-Teixeira, Kristina J.; Bourg, Norman A.; Brockelman, Warren Y.; Bunyavejchewin, Sarayudh; et al (, Nature)Abstract Numerous studies have shown reduced performance in plants that are surrounded by neighbours of the same species1,2, a phenomenon known as conspecific negative density dependence (CNDD)3. A long-held ecological hypothesis posits that CNDD is more pronounced in tropical than in temperate forests4,5, which increases community stabilization, species coexistence and the diversity of local tree species6,7. Previous analyses supporting such a latitudinal gradient in CNDD8,9have suffered from methodological limitations related to the use of static data10–12. Here we present a comprehensive assessment of latitudinal CNDD patterns using dynamic mortality data to estimate species-site-specific CNDD across 23 sites. Averaged across species, we found that stabilizing CNDD was present at all except one site, but that average stabilizing CNDD was not stronger toward the tropics. However, in tropical tree communities, rare and intermediate abundant species experienced stronger stabilizing CNDD than did common species. This pattern was absent in temperate forests, which suggests that CNDD influences species abundances more strongly in tropical forests than it does in temperate ones13. We also found that interspecific variation in CNDD, which might attenuate its stabilizing effect on species diversity14,15, was high but not significantly different across latitudes. Although the consequences of these patterns for latitudinal diversity gradients are difficult to evaluate, we speculate that a more effective regulation of population abundances could translate into greater stabilization of tropical tree communities and thus contribute to the high local diversity of tropical forests.more » « less