skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Perry, CT"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Over recent decades, many Caribbean reefs have transitioned to states where stony corals are no longer spatially dominant. The community dynamics culminating in this outcome are well known, but its functional implications remain incompletely understood. Here we used annual surveys from 1992 to 2019 to describe coral communities at 6 sites off St. John, US Virgin Islands, and explored how their ecological dynamics interact with their capacity to sustain estimated coral community calcification (G, kg CaCO 3 m -2 yr -1 ). These communities had low coral cover (≤4.4%), but they changed through small and incremental events that summed to a slight decline in coral cover and changes in species assemblages favoring biotic homogenization and weedy species. Estimated coral G remained low, between 0.3 and 1.3 kg CaCO 3 m -2 yr -1 (8.2-35.6 mmol CaCO 3 m -2 d -1 ), but it differed among sites and years. The dominant contributors to G were Siderastrea siderea (1 site), Porites astreoides (1 site), and Orbicella spp. (4 sites), but higher G only occurred where Orbicella spp. remained relatively common; G dramatically declined at 1 site when the abundance of this genus decreased. These results suggest that some coral-depleted reefs may maintain low G that could be sufficient to avoid transitions into net negative budget states, provided that biological and physical erosion and dissolution of CaCO 3 (not recorded here) are minimal. Further mortalities of the few coral species remaining on these reefs through disturbances like stony coral tissue loss disease would compromise this delicate production-erosion balance, and likely see transitions of such reefs into negative carbonate budget states. 
    more » « less