Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available December 27, 2023
-
The ability to control molecular-scale motion using electrostatic interactions was demonstrated using an N -phenylsuccinimide molecular rotor with an electrostatic pyridyl-gate. Protonation of the pyridal-gate forms stabilizing electrostatic interactions in the transition state of the bond rotation process that lowers the rotational barrier and increases the rate of rotation by two orders of magnitude. Molecular modeling and energy decomposition analysis confirm the dominant role of attractive electrostatic interactions in lowering the bond rotation transition state.more » « less
-
Abstract Stabilizing nitrogen pnictogen bond interactions were measured using molecular rotors. Intramolecular C=O⋅⋅⋅N interactions were formed in the bond rotation transition states which lowered the rotational barriers and increased the rates of rotation, as measured by EXSY NMR. The pnictogen interaction energies show a very strong correlation with the positive electrostatic potential on nitrogen, which was consistent with a strong electrostatic component. In contrast, the NBO perturbation and pyramidalization analyses show no correlation, suggesting that the orbital‐orbital component is minor. The strongest C=O⋅⋅⋅N pnictogen interactions were comparable to C=O⋅⋅⋅C=O interactions and were stronger than C=O⋅⋅⋅Ph interactions, when measured using the same
N ‐phenylimide rotor system. The ability of the nitrogen pnictogen interactions to stabilize transition states and enhance kinetic processes demonstrates their potential in catalysis and reaction design. -
Abstract Stabilizing nitrogen pnictogen bond interactions were measured using molecular rotors. Intramolecular C=O⋅⋅⋅N interactions were formed in the bond rotation transition states which lowered the rotational barriers and increased the rates of rotation, as measured by EXSY NMR. The pnictogen interaction energies show a very strong correlation with the positive electrostatic potential on nitrogen, which was consistent with a strong electrostatic component. In contrast, the NBO perturbation and pyramidalization analyses show no correlation, suggesting that the orbital‐orbital component is minor. The strongest C=O⋅⋅⋅N pnictogen interactions were comparable to C=O⋅⋅⋅C=O interactions and were stronger than C=O⋅⋅⋅Ph interactions, when measured using the same
N ‐phenylimide rotor system. The ability of the nitrogen pnictogen interactions to stabilize transition states and enhance kinetic processes demonstrates their potential in catalysis and reaction design. -
Abstract Cooperative behavior and orthogonal responses of two classes of coordinatively integrated photochromic molecules towards distinct external stimuli were demonstrated on the first example of a photo‐thermo‐responsive hierarchical platform. Synergetic and orthogonal responses to temperature and excitation wavelength are achieved by confining the stimuli‐responsive moieties within a metal–organic framework (MOF), leading to the preparation of a novel photo‐thermo‐responsive spiropyran‐diarylethene based material. Synergistic behavior of two photoswitches enables the study of stimuli‐responsive resonance energy transfer as well as control of the photoinduced charge transfer processes, milestones required to advance optoelectronics development. Spectroscopic studies in combination with theoretical modeling revealed a nonlinear effect on the material electronic structure arising from the coordinative integration of photoresponsive molecules with distinct photoisomerization mechanisms. Thus, the reported work covers multivariable facets of not only fundamental aspects of photoswitch cooperativity, but also provides a pathway to modulate photophysics and electronics of multidimensional functional materials exhibiting thermo‐photochromism.
-
null (Ed.)Carbon atom functionalization via generation of carbanions is the cornerstone of carborane chemistry. In this work, we report the synthesis and structural characterization of free ortho-carboranyl [C2B10H11]−, a three-dimensional inorganic analog of the elusive phenyl anion that features a “naked” carbanion center. The first example of a stable, discrete C(H)-deprotonated carborane anion was isolated as a completely separated ion pair with a crown ether-encapsulated potassium cation. An analogous approach led to the isolation and structural characterization of a doubly deprotonated 1,1′-bis(o-carborane) anion [C2B10H10]22−, which is the first example of a discrete molecular dicarbanion. These reactive carbanions are key intermediates in carbon vertex chemistry of carborane clusters.more » « less