skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Persson, Martin P"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Developing accurate process–structure–property models for metal additive manufacturing is crucial due to the numerous process parameters, extended build times, and high material costs which make it impractical to rely solely on an experimental trial and error approach when optimizing the process. In this work, a multiscale digital approach to estimate tensile anisotropy along selective laser melted titanium meta-stable alloys is presented. The approach uses a component scale thermal FEA model of the process to calculate temperature, a meso-scale phase field model to calculate microstructure evolution, and a microscale crystal plasticity model to calculate the effect of texture on the tensile properties in different directions. The model has predicted isotropic yield strength for this material, which could guide designers to choose orientations freely. However, anisotropy in hardening behavior could be expected but is caused by porosity and cracking, which are not considered in the presented models. We believe the presented approach, which relies solely on easy to use commercial simulation tools, lays a good foundation for the development of process–structure–property models to optimize process parameters. The modeling approach should be applicable to other mechanical properties and materials with appropriate considerations. 
    more » « less