skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 8:00 PM ET on Friday, March 21 until 8:00 AM ET on Saturday, March 22 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Pescetelli, Niccolo"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We develop a conceptual framework for studying collective adaptation in complex socio-cognitive systems, driven by dynamic interactions of social integration strategies, social environments and problem structures. Going beyond searching for ‘intelligent’ collectives, we integrate research from different disciplines and outline modelling approaches that can be used to begin answering questions such as why collectives sometimes fail to reach seemingly obvious solutions, how they change their strategies and network structures in response to different problems and how we can anticipate and perhaps change future harmful societal trajectories. We discuss the importance of considering path dependence, lack of optimization and collective myopia to understand the sometimes counterintuitive outcomes of collective adaptation. We call for a transdisciplinary, quantitative and societally useful social science that can help us to understand our rapidly changing and ever more complex societies, avoid collective disasters and reach the full potential of our ability to organize in adaptive collectives. 
    more » « less
  2. Many social species amplify their decision-making accuracy by deliberating in real-time closed-loop systems. Known as Swarm Intelligence (SI), this natural process has been studied extensively in schools of fish, flocks of birds, and swarms of bees. The present research looks at human groups and tests their ability to make financial forecasts by working together in systems modeled after natural swarms. Specifically, groups of financial traders were tasked with forecasting the weekly trends of four common market indices (SPX, GLD, GDX, and Crude Oil) over a period of 19 consecutive weeks. Results showed that individual forecasters, who averaged 56.6% accuracy when predicting weekly trends on their own, amplified their accuracy to 77.0% when predicting together as real-time swarms. This reflects a 36% increase in forecasting accuracy and shows high statistical significance (p<0.001). Further, if investments had been made according to these swarm-based forecasts, the group would have netted a 13.3% return on investment (ROI) over the 19 weeks, compared to the individual’s 0.7% ROI. This suggests that enabling groups of traders to form real-time systems online, governed by swarm intelligence algorithms, has the potential to significantly increase the accuracy and ROI of financial forecasts. 
    more » « less