skip to main content

Search for: All records

Creators/Authors contains: "Peterson, Kelly A."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Doping is required to increase the electrical conductivity of organic semiconductors for uses in electronic and energy conversion devices. The limited number of commonly used p-type dopants suggests that new dopants or doping mechanisms could improve the efficiency of doping and provide new means for processing doped polymers. Drawing on Lewis acid–base pair chemistry, we combined Lewis acid dopant B(C 6 F 5 ) 3 (BCF) with the weak Lewis base benzoyl peroxide (BPO). The detailed behavior of p-type doping of the model polymer poly(3-hexylthiophene) (P3HT) with this Lewis acid–base pair in solution was examined. Solution 19 F-NMR spectra confirmed the formation of the expected counterion, as well as side products from reactions with solvent. BCF : BPO was also found to efficiently dope a range of semiconducting polymers with varying chemical structures demonstrating that the BCF : BPO combination has an effective electron affinity of at least 5.3 eV. In thin films of regioregular P3HT cast from the doped solutions, delocalized polarons formed due to the large counterions leading to a large polaron-counterion distance. At and above 0.2 eq. BCF : BPO doping, amorphous areas of the film became doped, disrupting the structural order of the films. Despite the change in structural order, thin films of regioregular P3HT doped with 0.2 eq. BCF : BPO had a conductivity of 25 S cm −1 . This study demonstrates the effectiveness of a two-component Lewis acid–base doping mechanism and suggests additional two-component Lewis acid–base chemistries should be explored. 
    more » « less
  2. Semiconducting polymers have the potential to be used in thermoelectric devices that are lightweight, flexible, and fabricated using solution processing. Because of the structural and energetic disorder of these polymers, the relationship between their structure and thermoelectric properties is complex. We review how interrelated processing routes and doping methods affect the thermoelectric properties of polymers. The studies highlighted here have led to correlations between thermopower and electrical conductivity that can be described by theories under investigation. With greater understanding of the materials properties behind their performance, semiconducting polymers can be used in future power generation or cooling devices. 
    more » « less
  3. Thin films of amorphous small molecule semiconductors are widely used in organic light emitting displays and have promising applications in solar cells and thermoelectric devices. Adding dopants increases the conductivity of organic semiconductors, but high concentrations of dopants can disrupt their structural ordering, alter the shape of the electronic density of states in the material, and increase the effects of Coulomb interactions on charge transport. Electrical doping of the solution processable hole-transport material 2,2′,7,7′-tetrakis[ N , N -di(4-methoxyphenyl)amino]-9,9′-spirobifluorene (spiro-OMeTAD) was studied with 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane (F 4 TCNQ) as a p-type dopant. Infiltration of F 4 TCNQ from the vapor phase into films of spiro-OMeTAD provided a route to highly doped films with up to 39 ± 2 mol% doping. Structural characterization confirmed that the films remain amorphous even at the highest doping levels with no apparent phase separation. We quantitatively determined the carrier concentration using UV-Vis spectroscopy to interpret the evolution of the electrical conductivity. Over the range of carrier concentrations (10 19 –10 20 1 cm −3 ), the electrical conductivity increased no more than linearly with carrier concentration, while the thermopower had a small increase with carrier concentration. The trends in conductivity and thermopower were related to the unique electronic structure of spiro-OMeTAD, which is able to support two carriers per molecule. Temperature-dependent conductivity measurements were used to further analyze the transport mechanism. 
    more » « less
  4. Abstract

    Since doped polymers require a charge‐neutralizing counter‐ion to maintain charge neutrality, tailored and high degrees of doping in organic semiconductors requires an understanding of the coupling between ionic and electronic carrier motion. A method of counter‐ion exchange is utilized using the polymeric semiconductor poly[2,5‐bis(3‐tetradecylthiophen‐2‐yl)thieno[3,2‐b]thiophene] ‐C14to deconvolute the effects of ionic/polaronic interactions with the electrical properties of doped semiconducting polymers. In particular, exchanging the counter‐ions of the dopant nitrosonium hexafluorophosphate enables investigation into the role of counter‐ion size from 5.2 to 8.2 Å in diameter. The orientational order of the polymeric crystallites is not affected with this exchange process while effectively modifying the counter‐ion distance to the charge carrier. Doped films have electrical conductivities of 320 S cm−1and are not sensitive to an increased ion‐polaron distance. It is posited that other factors dominate the electrical properties at a device scale, such as the morphology and presence of domain boundaries. Interestingly, the temperature stability of the doped film can be drastically improved with the use of counter‐ions containing less labile bonds. This platform serves as a unique way to retain the morphology of polymeric thin films while studying charge interactions at the local scale.

    more » « less